2000 character limit reached
Collisional flavor pendula and neutrino quantum thermodynamics (2312.10340v1)
Published 16 Dec 2023 in hep-ph and astro-ph.HE
Abstract: Neutrinos in core-collapse supernovae and neutron-star mergers are susceptible to flavor instabilities of three kinds: slow, fast, and collisional. Prior work has established mappings of the first two onto abstract mechanical systems in flavor space, respectively named the slow and fast flavor pendula. Here we introduce and analyze the flavor pendulum associated with the third class. We explain our results in terms of the recently developed theory of neutrino quantum thermodynamics. Perhaps our most surprising finding is that there exists a limit in which decoherent interactions drive perfectly coherent flavor conversion.
- D. Nötzold and G. Raffelt, Neutrino dispersion at finite temperature and density, Nucl. Phys. B307, 924 (1988).
- J. Pantaleone, Neutrino oscillations at high densities, Phys. Lett. B 287, 128 (1992).
- J. Pantaleone, Neutrino flavor evolution near a supernova’s core, Phys. Lett. B 342, 250 (1995).
- Y.-Z. Qian and G. M. Fuller, Neutrino-neutrino scattering and matter-enhanced neutrino flavor transformation in supernovae, Phys. Rev. D 51, 1479 (1995).
- G. Sigl, Neutrino mixing constraints and supernova nucleosynthesis, Phys. Rev. D 51, 4035 (1995).
- S. Pastor and G. Raffelt, Flavor Oscillations in the Supernova Hot Bubble Region: Nonlinear Effects of Neutrino Background, Phys. Rev. Lett. 89, 191101 (2002).
- A. Friedland and C. Lunardini, Neutrino flavor conversion in a neutrino background: Single- versus multi-particle description, Phys. Rev. D 68, 013007 (2003).
- A. B. Balantekin and H. Yüksel, Neutrino mixing and nucleosynthesis in core-collapse supernovae, New J. Phys. 7, 51 (2005).
- A. Banerjee, A. Dighe, and G. Raffelt, Linearized flavor-stability analysis of dense neutrino streams, Phys. Rev. D 84, 053013 (2011).
- V. A. Kostelecký and S. Samuel, Neutrino oscillations in the early universe with an inverted neutrino-mass hierarchy, Phys. Lett. B 318, 127 (1993).
- H. Duan, G. M. Fuller, and Y.-Z. Qian, Collective neutrino flavor transformation in supernovae, Phys. Rev. D 74, 123004 (2006).
- R. F. Sawyer, Speed-up of neutrino transformations in a supernova environment, Phys. Rev. D 72, 045003 (2005).
- R. F. Sawyer, Neutrino cloud instabilities just above the neutrino sphere of a supernova, Phys. Rev. Lett. 116, 081101 (2016).
- L. Johns, Collisional flavor instabilities of supernova neutrinos, Phys. Rev. Lett. 130, 191001 (2023a).
- B. Dasgupta, A. Mirizzi, and M. Sen, Fast neutrino flavor conversions near the supernova core with realistic flavor-dependent angular distributions, J. Cosmol. Astropart. Phys. 2017 (02), 019.
- M.-R. Wu and I. Tamborra, Fast neutrino conversions: Ubiquitous in compact binary merger remnants, Phys. Rev. D 95, 103007 (2017).
- J. D. Martin, C. Yi, and H. Duan, Dynamic fast flavor oscillation waves in dense neutrino gases, Phys. Lett. B 800, 135088 (2020).
- S. Bhattacharyya and B. Dasgupta, Late-time behavior of fast neutrino oscillations, Phys. Rev. D 102, 063018 (2020).
- S. Bhattacharyya and B. Dasgupta, Fast flavor depolarization of supernova neutrinos, Phys. Rev. Lett. 126, 061302 (2021).
- S. Shalgar, I. Padilla-Gay, and I. Tamborra, Neutrino propagation hinders fast pairwise flavor conversions, J. Cosmol. Astropart. Phys. 2020 (06), 048.
- L. Johns and H. Nagakura, Fast flavor instabilities and the search for neutrino angular crossings, Phys. Rev. D 103, 123012 (2021).
- H. Nagakura and L. Johns, Constructing angular distributions of neutrinos in core-collapse supernovae from zeroth and first moments calibrated by full boltzmann neutrino transport, Phys. Rev. D 103, 123025 (2021a).
- H. Nagakura and L. Johns, New method for detecting fast neutrino flavor conversions in core-collapse supernova models with two-moment neutrino transport, Phys. Rev. D 104, 063014 (2021b).
- X. Li and D. M. Siegel, Neutrino fast flavor conversions in neutron-star postmerger accretion disks, Phys. Rev. Lett. 126, 251101 (2021).
- I. Padilla-Gay, I. Tamborra, and G. G. Raffelt, Neutrino flavor pendulum reloaded: The case of fast pairwise conversion, Phys. Rev. Lett. 128, 121102 (2022a).
- S. Richers, Evaluating approximate flavor instability metrics in neutron star mergers, Phys. Rev. D 106, 083005 (2022).
- A. Harada and H. Nagakura, Prospects of fast flavor neutrino conversion in rotating core-collapse supernovae, Astrophys. J. 924, 109 (2022).
- B. Dasgupta, Collective neutrino flavor instability requires a crossing, Phys. Rev. Lett. 128, 081102 (2022).
- L. Johns and H. Nagakura, Self-consistency in models of neutrino scattering and fast flavor conversion, Phys. Rev. D 106, 043031 (2022).
- H. Nagakura, Roles of fast neutrino-flavor conversion on the neutrino-heating mechanism of core-collapse supernova, Phys. Rev. Lett. 130, 211401 (2023).
- S. Shalgar and I. Tamborra, Neutrino decoupling is altered by flavor conversion, Phys. Rev. D 108, 043006 (2023a).
- S. Bhattacharyya and B. Dasgupta, Elaborating the ultimate fate of fast collective neutrino flavor oscillations, Phys. Rev. D 106, 103039 (2022).
- L. Johns and Z. Xiong, Collisional instabilities of neutrinos and their interplay with fast flavor conversion in compact objects, Phys. Rev. D 106, 103029 (2022).
- S. Shalgar and I. Tamborra, Change of direction in pairwise neutrino conversion physics: The effect of collisions, Phys. Rev. D 103, 063002 (2021).
- C. Kato, H. Nagakura, and T. Morinaga, Neutrino transport with the monte carlo method. II. quantum kinetic equations, Astrophys. J. Suppl. Ser. 257, 55 (2021).
- H. Sasaki and T. Takiwaki, A detailed analysis of the dynamics of fast neutrino flavor conversions with scattering effects, Prog. Theor. Exp. Phys. 2022, 073E01 (2022).
- R. S. L. Hansen, S. Shalgar, and I. Tamborra, Enhancement or damping of fast neutrino flavor conversions due to collisions, Phys. Rev. D 105, 123003 (2022).
- I. Padilla-Gay, I. Tamborra, and G. G. Raffelt, Neutrino fast flavor pendulum. ii. collisional damping, Phys. Rev. D 106, 103031 (2022b).
- C. Kato and H. Nagakura, Effects of energy-dependent scatterings on fast neutrino flavor conversions, Phys. Rev. D 106, 123013 (2022).
- C. Kato, H. Nagakura, and M. Zaizen, Flavor conversions with energy-dependent neutrino emission and absorption, Phys. Rev. D 108, 023006 (2023a).
- Y.-C. Lin and H. Duan, Collision-induced flavor instability in dense neutrino gases with energy-dependent scattering, Phys. Rev. D 107, 083034 (2023).
- D. F. G. Fiorillo and G. G. Raffelt, Flavor solitons in dense neutrino gases, Phys. Rev. D 107, 123024 (2023a).
- Z. Xiong, M.-R. Wu, and Y.-Z. Qian, Symmetry and bipolar motion in collective neutrino flavor oscillations (2023a), arXiv:2303.05906 [hep-ph] .
- J. Liu, M. Zaizen, and S. Yamada, Systematic study of the resonancelike structure in the collisional flavor instability of neutrinos, Phys. Rev. D 107, 123011 (2023a).
- H. Nagakura and M. Zaizen, Basic characteristics of neutrino flavor conversions in the post-shock regions of core-collapse supernova (2023), arXiv:2308.14800 [astro-ph.HE] .
- S. Shalgar and I. Tamborra, Do neutrinos become flavor unstable due to collisions with matter in the supernova decoupling region? (2023c), arXiv:2307.10366 [astro-ph.HE] .
- M. Zaizen and H. Nagakura, Characterizing quasisteady states of fast neutrino-flavor conversion by stability and conservation laws, Phys. Rev. D 107, 123021 (2023a).
- M. Zaizen and H. Nagakura, Simple method for determining asymptotic states of fast neutrino-flavor conversion, Phys. Rev. D 107, 103022 (2023b).
- C. Kato, H. Nagakura, and L. Johns, Collisional flavor swap with neutrino self-interactions (2023b), arXiv:2309.02619 [astro-ph.HE] .
- L. Johns, Thermodynamics of oscillating neutrinos (2023b), arXiv:2306.14982 [hep-ph] .
- H. Duan, G. M. Fuller, and Y.-Z. Qian, Simple picture for neutrino flavor transformation in supernovae, Phys. Rev. D 76, 085013 (2007b).
- G. G. Raffelt, n𝑛nitalic_n-mode coherence in collective neutrino oscillations, Phys. Rev. D 83, 105022 (2011).
- G. G. Raffelt and G. Sigl, Self-induced decoherence in dense neutrino gases, Phys. Rev. D 75, 083002 (2007).
- G. Raffelt, S. Sarikas, and D. S. Seixas, Axial symmetry breaking in self-induced flavor conversion of supernova neutrino fluxes, Phys. Rev. Lett. 111, 091101 (2013).
- G. Mangano, A. Mirizzi, and N. Saviano, Damping the neutrino flavor pendulum by breaking homogeneity, Phys. Rev. D 89, 073017 (2014).
- L. Johns and G. M. Fuller, Strange mechanics of the neutrino flavor pendulum, Phys. Rev. D 97, 023020 (2018).
- Z. Xiong, Many-body effects of collective neutrino oscillations, Phys. Rev. D 105, 103002 (2022).
- D. F. G. Fiorillo and G. G. Raffelt, Slow and fast collective neutrino oscillations: Invariants and reciprocity, Phys. Rev. D 107, 043024 (2023b).
- S. Shalgar and I. Tamborra, Do we have enough evidence to invalidate the mean-field approximation adopted to model collective neutrino oscillations?, Phys. Rev. D 107, 123004 (2023d).
- L. Johns, Neutrino many-body correlations (2023c), arXiv:2305.04916 [hep-ph] .
- D. F. G. Fiorillo, I. Padilla-Gay, and G. G. Raffelt, Collisions and collective flavor conversion: Integrating out the fast dynamics (2023), arXiv:2312.07612 [hep-ph] .