2000 character limit reached
Interferometric Signatures of Black Holes with Multiple Photon Spheres (2312.10304v2)
Published 16 Dec 2023 in gr-qc
Abstract: It has been reported that the photon ring structure in black hole images produces strong and universal interferometric signatures on long interferometric baselines, holding promise for measuring black hole parameters and testing general relativity. This paper investigates the interferometric signatures of black holes with one or two photon spheres, specifically within the framework of Einstein-Maxwell-Scalar models. Notably, for black holes possessing two photon spheres, interference between light rays orbiting the inner and outer photon spheres manifests as beat signals in the visibility amplitude, deviating from the universal signatures observed in the single-photon sphere case.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett., 875:L1, 2019. arXiv:1906.11238, doi:10.3847/2041-8213/ab0ec7.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophys. J. Lett., 875(1):L2, 2019. arXiv:1906.11239, doi:10.3847/2041-8213/ab0c96.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. Astrophys. J. Lett., 875(1):L3, 2019. arXiv:1906.11240, doi:10.3847/2041-8213/ab0c57.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophys. J. Lett., 875(1):L4, 2019. arXiv:1906.11241, doi:10.3847/2041-8213/ab0e85.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophys. J. Lett., 875(1):L5, 2019. arXiv:1906.11242, doi:10.3847/2041-8213/ab0f43.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophys. J. Lett., 875(1):L6, 2019. arXiv:1906.11243, doi:10.3847/2041-8213/ab1141.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. Astrophys. J. Lett., 910(1):L12, 2021. arXiv:2105.01169, doi:10.3847/2041-8213/abe71d.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon. Astrophys. J. Lett., 910(1):L13, 2021. arXiv:2105.01173, doi:10.3847/2041-8213/abe4de.
- Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophys. J. Lett., 930(2):L12, 2022. doi:10.3847/2041-8213/ac6674.
- Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration. Astrophys. J. Lett., 930(2):L13, 2022. doi:10.3847/2041-8213/ac6675.
- Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole. Astrophys. J. Lett., 930(2):L14, 2022. doi:10.3847/2041-8213/ac6429.
- Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass. Astrophys. J. Lett., 930(2):L15, 2022. doi:10.3847/2041-8213/ac6736.
- Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole. Astrophys. J. Lett., 930(2):L16, 2022. doi:10.3847/2041-8213/ac6672.
- Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric. Astrophys. J. Lett., 930(2):L17, 2022. doi:10.3847/2041-8213/ac6756.
- J. L. Synge. The Escape of Photons from Gravitationally Intense Stars. Mon. Not. Roy. Astron. Soc., 131(3):463–466, 1966. doi:10.1093/mnras/131.3.463.
- Rotating black holes: Locally nonrotating frames, energy extraction, and scalar synchrotron radiation. Astrophys. J., 178:347, 1972. doi:10.1086/151796.
- J. M. Bardeen. Timelike and null geodesics in the Kerr metric. In Les Houches Summer School of Theoretical Physics: Black Holes, 1973.
- Valerio Bozza. Gravitational Lensing by Black Holes. Gen. Rel. Grav., 42:2269–2300, 2010. arXiv:0911.2187, doi:10.1007/s10714-010-0988-2.
- Black Hole Shadows, Photon Rings, and Lensing Rings. Phys. Rev. D, 100(2):024018, 2019. arXiv:1906.00873, doi:10.1103/PhysRevD.100.024018.
- The shape of the black hole photon ring: A precise test of strong-field general relativity. Phys. Rev. D, 102(12):124004, 2020. arXiv:2008.03879, doi:10.1103/PhysRevD.102.124004.
- Maciek Wielgus. Photon rings of spherically symmetric black holes and robust tests of non-Kerr metrics. Phys. Rev. D, 104(12):124058, 2021. arXiv:2109.10840, doi:10.1103/PhysRevD.104.124058.
- New test on the Einstein equivalence principle through the photon ring of black holes. Phys. Rev. D, 104(6):064027, 2021. arXiv:2102.10888, doi:10.1103/PhysRevD.104.064027.
- Measuring Spin from Relative Photon-ring Sizes. Astrophys. J., 927(1):6, 2022. arXiv:2105.09962, doi:10.3847/1538-4357/ac4970.
- Michael D. Johnson et al. Universal interferometric signatures of a black hole’s photon ring. Sci. Adv., 6(12):eaaz1310, 2020. arXiv:1907.04329, doi:10.1126/sciadv.aaz1310.
- Decoding a black hole metric from the interferometric pattern of the relativistic images of a compact source. JCAP, 10:054, 2021. arXiv:2107.05723, doi:10.1088/1475-7516/2021/10/054.
- Photon Ring Autocorrelations. Phys. Rev. D, 103(10):104038, 2021. arXiv:2010.03683, doi:10.1103/PhysRevD.103.104038.
- Light echos and coherent autocorrelations in a black hole spacetime. Class. Quant. Grav., 38(12):125006, 2021. arXiv:2012.11778, doi:10.1088/1361-6382/abeae4.
- Quasinormal modes in two-photon autocorrelation and the geometric-optics approximation. 9 2021. arXiv:2109.02844.
- Universal polarimetric signatures of the black hole photon ring. Phys. Rev. D, 101(8):084020, 2020. arXiv:2001.08750, doi:10.1103/PhysRevD.101.084020.
- Alexander Gußmann. Polarimetric signatures of the photon ring of a black hole that is pierced by a cosmic axion string. JHEP, 08:160, 2021. arXiv:2105.06659, doi:10.1007/JHEP08(2021)160.
- Photon ring test of the Kerr hypothesis: variation in the ring shape. 6 2022. arXiv:2206.02781.
- Images and photon ring signatures of thick disks around black holes. 6 2022. arXiv:2206.12066.
- Spontaneous Scalarization of Charged Black Holes. Phys. Rev. Lett., 121(10):101102, 2018. arXiv:1806.05190, doi:10.1103/PhysRevLett.121.101102.
- Spontaneous Scalarisation of Charged Black Holes: Coupling Dependence and Dynamical Features. Class. Quant. Grav., 36(13):134002, 2019. [Erratum: Class.Quant.Grav. 37, 049501 (2020)]. arXiv:1902.05079, doi:10.1088/1361-6382/ab23a1.
- Charged black holes with axionic-type couplings: Classes of solutions and dynamical scalarization. Phys. Rev. D, 100(8):084045, 2019. arXiv:1908.00037, doi:10.1103/PhysRevD.100.084045.
- Einstein-Maxwell-scalar black holes: the hot, the cold and the bald. Phys. Lett. B, 806:135493, 2020. arXiv:2002.00963, doi:10.1016/j.physletb.2020.135493.
- Scalarized charged black holes with scalar mass term. Phys. Rev. D, 100(12):124055, 2019. arXiv:1909.11859, doi:10.1103/PhysRevD.100.124055.
- Pedro G.S. Fernandes. Einstein-Maxwell-scalar black holes with massive and self-interacting scalar hair. Phys. Dark Univ., 30:100716, 2020. arXiv:2003.01045, doi:10.1016/j.dark.2020.100716.
- Yan Peng. Scalarization of horizonless reflecting stars: neutral scalar fields non-minimally coupled to Maxwell fields. Phys. Lett. B, 804:135372, 2020. arXiv:1912.11989, doi:10.1016/j.physletb.2020.135372.
- Instability of Reissner–Nordström black hole in Einstein-Maxwell-scalar theory. Eur. Phys. J. C, 79(3):273, 2019. arXiv:1808.02609, doi:10.1140/epjc/s10052-019-6792-6.
- Stability of scalarized charged black holes in the Einstein–Maxwell–Scalar theory. Eur. Phys. J. C, 79(8):641, 2019. arXiv:1904.09864, doi:10.1140/epjc/s10052-019-7176-7.
- Radial perturbations of the scalarized black holes in Einstein-Maxwell-conformally coupled scalar theory. Phys. Rev. D, 102(6):064011, 2020. arXiv:2005.06677, doi:10.1103/PhysRevD.102.064011.
- Onset of rotating scalarized black holes in Einstein-Chern-Simons-Scalar theory. Phys. Lett. B, 814:136081, 2021. arXiv:2012.02375, doi:10.1016/j.physletb.2021.136081.
- Stability analysis of a charged black hole with a nonlinear complex scalar field. Phys. Rev. D, 104(4):044008, 2021. arXiv:2101.00026, doi:10.1103/PhysRevD.104.044008.
- Higher dimensional black hole scalarization. JHEP, 09:186, 2020. arXiv:2007.04153, doi:10.1007/JHEP09(2020)186.
- Quasinormal modes of scalarized black holes in the Einstein–Maxwell–Scalar theory. Phys. Lett. B, 790:400–407, 2019. arXiv:1812.03604, doi:10.1016/j.physletb.2019.01.046.
- Quasinormal modes of hot, cold and bald Einstein-Maxwell-scalar black holes. 8 2020. arXiv:2008.11744.
- Scalarized charged black holes in the Einstein-Maxwell-Scalar theory with two U(1) fields. Phys. Lett. B, 811:135905, 2020. arXiv:2009.05193, doi:10.1016/j.physletb.2020.135905.
- Scalarized black holes in the Einstein-Maxwell-scalar theory with a quasitopological term. Phys. Rev. D, 103(2):024010, 2021. arXiv:2011.09665, doi:10.1103/PhysRevD.103.024010.
- Topology and spacetime structure influences on black hole scalarization. 12 2020. arXiv:2012.11844.
- Scalarization of asymptotically anti–de Sitter black holes with applications to holographic phase transitions. Phys. Rev. D, 101(12):124016, 2020. arXiv:1911.01950, doi:10.1103/PhysRevD.101.124016.
- Black Hole Spontaneous Scalarisation with a Positive Cosmological Constant. Phys. Lett. B, 802:135269, 2020. arXiv:1910.05286, doi:10.1016/j.physletb.2020.135269.
- Dynamical charged black hole spontaneous scalarization in anti–de Sitter spacetimes. Phys. Rev. D, 104(8):084089, 2021. arXiv:2103.13599, doi:10.1103/PhysRevD.104.084089.
- Scalarized Einstein–Maxwell-scalar black holes in anti-de Sitter spacetime. Eur. Phys. J. C, 81(10):864, 2021. arXiv:2102.04015, doi:10.1140/epjc/s10052-021-09614-7.
- Nonlinear dynamics of hot, cold and bald Einstein-Maxwell-scalar black holes in AdS spacetime. 7 2023. arXiv:2307.03060.
- Critical Phenomena in Dynamical Scalarization of Charged Black Holes. Phys. Rev. Lett., 128(16):161105, 2022. arXiv:2112.07455, doi:10.1103/PhysRevLett.128.161105.
- Dynamical transitions in scalarization and descalarization through black hole accretion. Phys. Rev. D, 106(6):L061501, 2022. arXiv:2204.09260, doi:10.1103/PhysRevD.106.L061501.
- Type I critical dynamical scalarization and descalarization in Einstein-Maxwell-scalar theory. 6 2023. arXiv:2306.10371.
- Scalarized Kerr-Newman black holes. JHEP, 10:076, 2023. arXiv:2307.12210, doi:10.1007/JHEP10(2023)076.
- Photon spheres and spherical accretion image of a hairy black hole. Phys. Rev. D, 104(2):024003, 2021. arXiv:2104.08703, doi:10.1103/PhysRevD.104.024003.
- Photon ring and observational appearance of a hairy black hole. Phys. Rev. D, 104(4):044049, 2021. arXiv:2105.11770, doi:10.1103/PhysRevD.104.044049.
- Gravitational lensing by black holes with multiple photon spheres. Phys. Rev. D, 105(12):124064, 2022. arXiv:2204.13948, doi:10.1103/PhysRevD.105.124064.
- Appearance of an infalling star in black holes with multiple photon spheres. Sci. China Phys. Mech. Astron., 65(12):120412, 2022. arXiv:2206.13705, doi:10.1007/s11433-022-1986-x.
- Light rings as observational evidence for event horizons: long-lived modes, ergoregions and nonlinear instabilities of ultracompact objects. Phys. Rev. D, 90(4):044069, 2014. arXiv:1406.5510, doi:10.1103/PhysRevD.90.044069.
- Joe Keir. Slowly decaying waves on spherically symmetric spacetimes and ultracompact neutron stars. Class. Quant. Grav., 33(13):135009, 2016. arXiv:1404.7036, doi:10.1088/0264-9381/33/13/135009.
- Light rings and long-lived modes in quasiblack hole spacetimes. Phys. Rev. D, 105(2):024049, 2022. arXiv:2108.08967, doi:10.1103/PhysRevD.105.024049.
- Quasinormal modes of black holes with multiple photon spheres. JHEP, 06:060, 2022. arXiv:2112.14133, doi:10.1007/JHEP06(2022)060.
- Echoes from hairy black holes. JHEP, 06:073, 2022. arXiv:2204.00982, doi:10.1007/JHEP06(2022)073.
- Superradiance instabilities of charged black holes in Einstein-Maxwell-scalar theory. JHEP, 07:070, 2023. arXiv:2301.06483, doi:10.1007/JHEP07(2023)070.
- Quasi-topological Electromagnetism: Dark Energy, Dyonic Black Holes, Stable Photon Spheres and Hidden Electromagnetic Duality. Sci. China Phys. Mech. Astron., 63:240411, 2020. arXiv:1907.10876, doi:10.1007/s11433-019-1446-1.
- Echoes from Classical Black Holes. 12 2021. arXiv:2112.14780.
- Resummation of Massive Gravity. Phys. Rev. Lett., 106:231101, 2011. arXiv:1011.1232, doi:10.1103/PhysRevLett.106.231101.
- Gravitational wave echoes from black holes in massive gravity. Phys. Rev. D, 103(2):024058, 2021. arXiv:2011.04032, doi:10.1103/PhysRevD.103.024058.
- Naoki Tsukamoto. Gravitational lensing by two photon spheres in a black-bounce spacetime in strong deflection limits. Phys. Rev. D, 104(6):064022, 2021. arXiv:2105.14336, doi:10.1103/PhysRevD.104.064022.
- Naoki Tsukamoto. Linearization stability of reflection-asymmetric thin-shell wormholes with double shadows. Phys. Rev. D, 103(6):064031, 2021. arXiv:2101.07060, doi:10.1103/PhysRevD.103.064031.
- Naoki Tsukamoto. Retrolensing by two photon spheres of a black-bounce spacetime. Phys. Rev. D, 105(8):084036, 2022. arXiv:2202.09641, doi:10.1103/PhysRevD.105.084036.
- Black holes with multiple photon spheres. Phys. Rev. D, 107(12):124037, 2023. arXiv:2212.12901, doi:10.1103/PhysRevD.107.124037.
- Hot Accretion Flows Around Black Holes. Ann. Rev. Astron. Astrophys., 52:529–588, 2014. arXiv:1401.0586, doi:10.1146/annurev-astro-082812-141003.
- Michael D. Johnson et al. Resolved Magnetic-Field Structure and Variability Near the Event Horizon of Sagittarius A*. Science, 350(6265):1242–1245, 2015. arXiv:1512.01220, doi:10.1126/science.aac7087.
- Interferometry and Synthesis in Radio Astronomy. Springer International Publishing, 2017. doi:10.1007/978-3-319-44431-4.