Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
35 tokens/sec
2000 character limit reached

Dynamical Casimir cooling in circuit QED systems (2312.09893v1)

Published 15 Dec 2023 in quant-ph and cond-mat.mes-hall

Abstract: A transmission line coupled to an externally driven superconducting quantum interference device (SQUID) can exhibit the Dynamical Casimir Effect (DCE). Employing this setup, we quantize the SQUID degrees of freedom and show that it gives rise to a three-body interaction Hamiltonian with the cavity modes. By considering only two interacting modes from the cavities we show that the device can function as an autonomous cooler where the SQUID can be used as a work source to cool down the cavity modes. Moreover, this setup allows for coupling to all modes existing inside the cavities, and we show that by adding two other extra modes to the interaction with the SQUID the cooling effect can be enhanced.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. M. H. Devoret et al., Les Houches, Session LXIII 7, 133 (1995).
  2. M. H. Devoret, A. Wallraff, and J. M. Martinis, arXiv preprint cond-mat/0411174 https://arxiv.org/abs/cond-mat/0411174 (2004).
  3. F. Beaudoin, J. M. Gambetta, and A. Blais, Physical Review A 84, 043832 (2011).
  4. W. Wustmann and V. Shumeiko, Parametric resonance in tunable superconducting cavities, 1302.3484 [cond-mat, physics:quant-ph] .
  5. C. D. Fosco, F. C. Lombardo, and F. D. Mazzitelli, Physical Review D 87, 105008.
  6. B. Karimi and J. Pekola, Physical Review B 94, 184503 (2016).
  7. R. Uzdin, A. Levy, and R. Kosloff, Physical Review X 5, 031044 (2015).
  8. K. Zhang, F. Bariani, and P. Meystre, Physical review letters 112, 150602 (2014).
  9. S. Chand and A. Biswas, Physical Review E 95, 032111 (2017).
  10. P. A. Camati, J. F. Santos, and R. M. Serra, Physical Review A 99, 062103 (2019).
  11. A. Levy and R. Kosloff, Physical review letters 108, 070604 (2012).
  12. J. P. Palao, R. Kosloff, and J. M. Gordon, Physical Review E 64, 056130 (2001).
  13. N. Linden, S. Popescu, and P. Skrzypczyk, Physical review letters 105, 130401 (2010).
  14. V. Dodonov, Physics 2, 67 (2020).
  15. A. Lupascu, C. J. P. M. Harmans, and J. E. Mooij, Physical Review B 71, 184506, cond-mat/0410730 .
  16. The SQUID handbook, OCLC: ocm52746892.
  17. M. Wallquist, V. S. Shumeiko, and G. Wendin, Physical Review B 74, 224506, cond-mat/0608209 .
  18. C. K. Law, Physical Review A 51, 2537.
  19. J. R. Johansson, P. D. Nation, and F. Nori, Computer Physics Communications 183, 1760 (2012).
  20. N. Freitas and J. P. Paz, Physical Review E 95, 012146 (2017).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com