Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SLS4D: Sparse Latent Space for 4D Novel View Synthesis (2312.09743v1)

Published 15 Dec 2023 in cs.CV and cs.GR

Abstract: Neural radiance field (NeRF) has achieved great success in novel view synthesis and 3D representation for static scenarios. Existing dynamic NeRFs usually exploit a locally dense grid to fit the deformation field; however, they fail to capture the global dynamics and concomitantly yield models of heavy parameters. We observe that the 4D space is inherently sparse. Firstly, the deformation field is sparse in spatial but dense in temporal due to the continuity of of motion. Secondly, the radiance field is only valid on the surface of the underlying scene, usually occupying a small fraction of the whole space. We thus propose to represent the 4D scene using a learnable sparse latent space, a.k.a. SLS4D. Specifically, SLS4D first uses dense learnable time slot features to depict the temporal space, from which the deformation field is fitted with linear multi-layer perceptions (MLP) to predict the displacement of a 3D position at any time. It then learns the spatial features of a 3D position using another sparse latent space. This is achieved by learning the adaptive weights of each latent code with the attention mechanism. Extensive experiments demonstrate the effectiveness of our SLS4D: it achieves the best 4D novel view synthesis using only about $6\%$ parameters of the most recent work.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (63)
  1. B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng, “Nerf: Representing scenes as neural radiance fields for view synthesis,” Communications of the ACM, vol. 65, no. 1, pp. 99–106, 2021.
  2. W. Gan, H. Xu, Y. Huang, S. Chen, and N. Yokoya, “V4d: Voxel for 4d novel view synthesis,” IEEE Transactions on Visualization and Computer Graphics, 2023.
  3. A. Cao and J. Johnson, “Hexplane: A fast representation for dynamic scenes,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 130–141.
  4. J. Fang, T. Yi, X. Wang, L. Xie, X. Zhang, W. Liu, M. Nießner, and Q. Tian, “Fast dynamic radiance fields with time-aware neural voxels,” in SIGGRAPH Asia.   ACM, 2022, pp. 11:1–11:9.
  5. R. Shao, Z. Zheng, H. Tu, B. Liu, H. Zhang, and Y. Liu, “Tensor4d: Efficient neural 4d decomposition for high-fidelity dynamic reconstruction and rendering,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 16 632–16 642.
  6. B. A. Olshausen and D. J. Field, “K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation,” IEEE Transactions on Signal Processing, vol. 54, no. 11, pp. 4311–4322, 2006.
  7. M. Aharon, M. Elad, and A. M. Bruckstein, “Emergence of simple-cell receptive field properties by learning a sparse code for natural images,” Nature, vol. 381, pp. 607–609, 1996.
  8. M.-H. Guo, Z.-N. Liu, T.-J. Mu, and S.-M. Hu, “Beyond self-attention: External attention using two linear layers for visual tasks,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 5, pp. 5436–5447, 2022.
  9. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  10. A. Chen, Z. Xu, A. Geiger, J. Yu, and H. Su, “Tensorf: Tensorial radiance fields,” in European Conference on Computer Vision.   Springer, 2022, pp. 333–350.
  11. T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural graphics primitives with a multiresolution hash encoding,” ACM Transactions on Graphics, vol. 41, no. 4, pp. 1–15, 2022.
  12. K. Zhang, G. Riegler, N. Snavely, and V. Koltun, “Nerf++: Analyzing and improving neural radiance fields,” arXiv preprint arXiv:2010.07492, 2020.
  13. A. Chen, Z. Xu, X. Wei, S. Tang, H. Su, and A. Geiger, “Factor fields: A unified framework for neural fields and beyond,” arXiv preprint arXiv:2302.01226, 2023.
  14. Z. Wang, S. Wu, W. Xie, M. Chen, and V. A. Prisacariu, “Nerf–: Neural radiance fields without known camera parameters,” arXiv preprint arXiv:2102.07064, 2021.
  15. X. Zhang, S. Bi, K. Sunkavalli, H. Su, and Z. Xu, “Nerfusion: Fusing radiance fields for large-scale scene reconstruction,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 5449–5458.
  16. S. Peng, M. Niemeyer, L. Mescheder, M. Pollefeys, and A. Geiger, “Convolutional occupancy networks,” in 16th European Conference on Computer Vision.   Springer, 2020, pp. 523–540.
  17. B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis, “3d gaussian splatting for real-time radiance field rendering,” ACM Transactions on Graphics, vol. 42, no. 4, pp. 1–14, 2023.
  18. A. Yu, R. Li, M. Tancik, H. Li, R. Ng, and A. Kanazawa, “Plenoctrees for real-time rendering of neural radiance fields,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 5752–5761.
  19. T. Mu, H. Chen, J. Cai, and N. Guo, “Neural 3d reconstruction from sparse views using geometric priors,” Computational Visual Media, vol. 9, no. 4, pp. 687–697, 2023.
  20. J. T. Barron, B. Mildenhall, M. Tancik, P. Hedman, R. Martin-Brualla, and P. P. Srinivasan, “Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 5855–5864.
  21. J. T. Barron, B. Mildenhall, D. Verbin, P. P. Srinivasan, and P. Hedman, “Mip-nerf 360: Unbounded anti-aliased neural radiance fields,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 5470–5479.
  22. T. Hu, S. Liu, Y. Chen, T. Shen, and J. Jia, “Efficientnerf efficient neural radiance fields,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 12 902–12 911.
  23. J. T. Batina, “Unsteady euler algorithm with unstructured dynamic mesh for complex-aircraft aerodynamic analysis,” AIAA journal, vol. 29, no. 3, pp. 327–333, 1991.
  24. S. Huo, F. Wang, W. Yan, and Z. Yue, “Layered elastic solid method for the generation of unstructured dynamic mesh,” Finite elements in analysis and design, vol. 46, no. 10, pp. 949–955, 2010.
  25. G. Wu, T. Yi, J. Fang, L. Xie, X. Zhang, W. Wei, W. Liu, Q. Tian, and X. Wang, “4d gaussian splatting for real-time dynamic scene rendering,” arXiv preprint arXiv:2310.08528, 2023.
  26. J.-W. Liu, Y.-P. Cao, W. Mao, W. Zhang, D. J. Zhang, J. Keppo, Y. Shan, X. Qie, and M. Z. Shou, “Devrf: Fast deformable voxel radiance fields for dynamic scenes,” Advances in Neural Information Processing Systems, vol. 35, pp. 36 762–36 775, 2022.
  27. A. Pumarola, E. Corona, G. Pons-Moll, and F. Moreno-Noguer, “D-nerf: Neural radiance fields for dynamic scenes,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 10 318–10 327.
  28. K. Park, U. Sinha, J. T. Barron, S. Bouaziz, D. B. Goldman, S. M. Seitz, and R. Martin-Brualla, “Nerfies: Deformable neural radiance fields,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 5865–5874.
  29. L. Song, A. Chen, Z. Li, Z. Chen, L. Chen, J. Yuan, Y. Xu, and A. Geiger, “Nerfplayer: A streamable dynamic scene representation with decomposed neural radiance fields,” IEEE Transactions on Visualization and Computer Graphics, vol. 29, no. 5, pp. 2732–2742, 2023.
  30. T. Li, M. Slavcheva, M. Zollhoefer, S. Green, C. Lassner, C. Kim, T. Schmidt, S. Lovegrove, M. Goesele, R. Newcombe et al., “Neural 3d video synthesis from multi-view video,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 5521–5531.
  31. S. Fridovich-Keil, G. Meanti, F. R. Warburg, B. Recht, and A. Kanazawa, “K-planes: Explicit radiance fields in space, time, and appearance,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 12 479–12 488.
  32. C. Gao, A. Saraf, J. Kopf, and J.-B. Huang, “Dynamic view synthesis from dynamic monocular video,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 5712–5721.
  33. Z. Li, S. Niklaus, N. Snavely, and O. Wang, “Neural scene flow fields for space-time view synthesis of dynamic scenes,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 6498–6508.
  34. H. Jang and D. Kim, “D-tensorf: Tensorial radiance fields for dynamic scenes,” arXiv preprint arXiv:2212.02375, 2022.
  35. K. Park, U. Sinha, P. Hedman, J. T. Barron, S. Bouaziz, D. B. Goldman, R. Martin-Brualla, and S. M. Seitz, “Hypernerf: a higher-dimensional representation for topologically varying neural radiance fields,” ACM Transactions on Graphics, vol. 40, no. 6, pp. 238:1–238:12, 2021.
  36. P. Bojanowski, A. Joulin, D. Lopez-Paz, and A. Szlam, “Optimizing the latent space of generative networks,” in Proceedings of the 35th International Conference on Machine Learning, J. G. Dy and A. Krause, Eds., vol. 80.   PMLR, 2018, pp. 599–608.
  37. A. Brock, T. Lim, J. M. Ritchie, and N. Weston, “Generative and discriminative voxel modeling with convolutional neural networks,” arXiv preprint arXiv:1608.04236, 2016.
  38. C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese, “3d-r2n2: A unified approach for single and multi-view 3d object reconstruction,” in 14th European Conference on Computer Vision.   Springer, 2016, pp. 628–644.
  39. A. Dai, C. Ruizhongtai Qi, and M. Nießner, “Shape completion using 3d-encoder-predictor cnns and shape synthesis,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 5868–5877.
  40. M. Niemeyer, J. T. Barron, B. Mildenhall, M. S. Sajjadi, A. Geiger, and N. Radwan, “Regnerf: Regularizing neural radiance fields for view synthesis from sparse inputs,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 5480–5490.
  41. C. Häne, S. Tulsiani, and J. Malik, “Hierarchical surface prediction for 3d object reconstruction,” in 2017 International Conference on 3D Vision.   IEEE, 2017, pp. 412–420.
  42. G. Riegler, A. O. Ulusoy, H. Bischof, and A. Geiger, “Octnetfusion: Learning depth fusion from data,” in 2017 International Conference on 3D Vision (3DV).   IEEE, 2017, pp. 57–66.
  43. P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong, “O-cnn: Octree-based convolutional neural networks for 3d shape analysis,” ACM Transactions On Graphics, vol. 36, no. 4, pp. 1–11, 2017.
  44. A. Dai, C. Diller, and M. Nießner, “Sg-nn: Sparse generative neural networks for self-supervised scene completion of rgb-d scans,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 849–858.
  45. L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger, “Occupancy networks: Learning 3d reconstruction in function space,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 4460–4470.
  46. J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove, “Deepsdf: Learning continuous signed distance functions for shape representation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 165–174.
  47. X. Yan, L. Lin, N. J. Mitra, D. Lischinski, D. Cohen-Or, and H. Huang, “Shapeformer: Transformer-based shape completion via sparse representation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 6239–6249.
  48. B. Zhang, M. Nießner, and P. Wonka, “3dilg: Irregular latent grids for 3d generative modeling,” Advances in Neural Information Processing Systems, vol. 35, pp. 21 871–21 885, 2022.
  49. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Transformers for image recognition at scale,” in 9th International Conference on Learning Representations.   OpenReview.net, 2021.
  50. M. Jaderberg, K. Simonyan, A. Zisserman et al., “Spatial transformer networks,” Advances in neural information processing systems, vol. 28, 2015.
  51. H. Zhao, Y. Zhang, S. Liu, J. Shi, C. C. Loy, D. Lin, and J. Jia, “Psanet: Point-wise spatial attention network for scene parsing,” in Proceedings of the European Conference on Computer Vision, 2018, pp. 267–283.
  52. M. Guo, J. Cai, Z. Liu, T. Mu, R. R. Martin, and S. Hu, “PCT: point cloud transformer,” Computational Visual Media, vol. 7, no. 2, pp. 187–199, 2021.
  53. D. Misra, T. Nalamada, A. U. Arasanipalai, and Q. Hou, “Rotate to attend: Convolutional triplet attention module,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021, pp. 3139–3148.
  54. B. Zhang, J. Tang, M. Nießner, and P. Wonka, “3dshape2vecset: A 3d shape representation for neural fields and generative diffusion models,” ACM Transactions on Graphics, vol. 42, no. 4, pp. 92:1–92:16, 2023.
  55. J. T. Kajiya and B. P. Von Herzen, “Ray tracing volume densities,” ACM SIGGRAPH computer graphics, vol. 18, no. 3, pp. 165–174, 1984.
  56. N. Max, “Optical models for direct volume rendering,” IEEE Transactions on Visualization and Computer Graphics, vol. 1, no. 2, pp. 99–108, 1995.
  57. B. Mildenhall, P. P. Srinivasan, R. Ortiz-Cayon, N. K. Kalantari, R. Ramamoorthi, R. Ng, and A. Kar, “Local light field fusion: Practical view synthesis with prescriptive sampling guidelines,” ACM Transactions on Graphics, vol. 38, no. 4, pp. 1–14, 2019.
  58. J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141.
  59. N. Shazeer, “Glu variants improve transformer,” arXiv preprint arXiv:2002.05202, 2020.
  60. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.
  61. R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effectiveness of deep features as a perceptual metric,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 586–595.
  62. S. Lombardi, T. Simon, J. Saragih, G. Schwartz, A. Lehrmann, and Y. Sheikh, “Neural volumes: Learning dynamic renderable volumes from images,” arXiv preprint arXiv:1906.07751, 2019.
  63. G.-W. Yang, W.-Y. Zhou, H.-Y. Peng, D. Liang, T.-J. Mu, and S.-M. Hu, “Recursive-nerf: An efficient and dynamically growing nerf,” IEEE Transactions on Visualization and Computer Graphics, 2022.
Citations (1)

Summary

  • The paper introduces an innovative sparse latent space that drastically reduces network parameters for dynamic novel view synthesis.
  • It leverages distinct latent codes for time slots and spatial features to effectively capture and render deformations and radiance fields.
  • Experiments show that SLS4D outperforms traditional models by using only 6% of the parameters while enhancing rendering quality.

Overview of SLS4D

The paper presents a novel framework, Sparse Latent Space for 4D Novel View Synthesis (SLS4D), focusing on improving the efficiency and effectiveness of dynamic Neural Radiance Fields (NeRF). SLS4D introduces a compact latent feature space technique to encode temporal and spatial information in dynamic scenes, allowing for a significant reduction in network parameters while delivering high-quality rendering.

SLS4D Architecture

SLS4D departs from traditional approaches that use dense grid or multilayer perceptron (MLP) models to represent deformation and radiance fields. Instead, it leverages latent codes, a form of sparse representation, to describe these fields. Specifically, a set of dense learnable time slot features captures temporal space, while two distinct sparse latent spaces represent the deformation and radiance fields. This design results in a more efficient model in terms of network parameters that is capable of rendering dynamic novel views effectively.

Effectiveness and Efficiency

Extensive experiments show that SLS4D outperforms previous methods in terms of rendering quality while using only 6% of the parameters required by the most recent competing work. This significant reduction in network size reduces the training difficulty and resource consumption, making it a more practical option for novel view synthesis applications.

Contributions and Potential

The paper details the following contributions:

  • The introduction of a sparse latent space for 4D representation that drastically reduces the network parameters needed for dynamic NeRFs.
  • The use of an attention mechanism in a spatial latent feature space that integrates global priors and improves rendering quality.
  • The encoding of temporal information through time slots, increasing the accuracy of dynamic scene representation.

The SLS4D framework opens possibilities for future developments in dynamic 3D representations by demonstrating the advantages of latent space interpolation and highlighting areas for further optimization, such as adapting to lengthy input durations.

Final Thoughts

In summary, SLS4D represents a significant advance in neural rendering techniques for dynamic scenes, providing an efficient and practical solution to the challenges of 4D novel view synthesis. The approach's ability to capture high-frequency temporal information and adjust to the complexity of local textures and geometry makes it a strong candidate for further improvements and adoption in various 3D scene rendering applications.

X Twitter Logo Streamline Icon: https://streamlinehq.com