Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CLAF: Contrastive Learning with Augmented Features for Imbalanced Semi-Supervised Learning (2312.09598v2)

Published 15 Dec 2023 in cs.CV

Abstract: Due to the advantages of leveraging unlabeled data and learning meaningful representations, semi-supervised learning and contrastive learning have been progressively combined to achieve better performances in popular applications with few labeled data and abundant unlabeled data. One common manner is assigning pseudo-labels to unlabeled samples and selecting positive and negative samples from pseudo-labeled samples to apply contrastive learning. However, the real-world data may be imbalanced, causing pseudo-labels to be biased toward the majority classes and further undermining the effectiveness of contrastive learning. To address the challenge, we propose Contrastive Learning with Augmented Features (CLAF). We design a class-dependent feature augmentation module to alleviate the scarcity of minority class samples in contrastive learning. For each pseudo-labeled sample, we select positive and negative samples from labeled data instead of unlabeled data to compute contrastive loss. Comprehensive experiments on imbalanced image classification datasets demonstrate the effectiveness of CLAF in the context of imbalanced semi-supervised learning.

Summary

We haven't generated a summary for this paper yet.