Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Speed limits of two-qubit gates with qudits (2312.09218v1)

Published 14 Dec 2023 in quant-ph

Abstract: The speed of elementary quantum gates ultimately sets the limit on the speed at which quantum circuits can operate. For a fixed physical interaction strength between two qubits, the speed of any two-qubit gate is limited even with arbitrarily fast single-qubit gates. In this work, we explore the possibilities of speeding up two-qubit gates beyond such a limit by expanding our computational space outside the qubit subspace, which is experimentally relevant for qubits encoded in multi-level atoms or anharmonic oscillators. We identify an optimal theoretical bound for the speed limit of a two-qubit gate achieved using two qudits with a bounded interaction strength and arbitrarily fast single-qudit gates. In addition, we find an experimentally feasible protocol using two parametrically coupled superconducting transmons that achieves this theoretical speed limit in a non-trivial way. We also consider practical scenarios with limited single-qudit drive strengths and off-resonant transitions. For such scenarios, we develop an open-source, machine learning assisted, quantum optimal control algorithm that can achieve a speedup close to the theoretical limit with near-perfect gate fidelity. This work opens up a new avenue to speed up two-qubit gates when the physical interaction strength between qubits cannot be easily increased while extra states outside the qubit subspace can be well controlled.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. J. Preskill, Quantum 2, 79 (2018).
  2. T. Noh et al., Nature Physics 19, 1445 (2023).
  3. N. P. Breuckmann and J. N. Eberhardt, PRX Quantum 2, 040101 (2021).
  4. P. Hrmo et al., Nature Communications 14, 2242 (2023).
  5. S. Cao, M. Bakr, G. Campanaro, S. D. Fasciati, J. Wills, D. Lall, B. Shteynas, V. Chidambaram, I. Rungger,  and P. Leek, “Emulating two qubits with a four-level transmon qudit for variational quantum algorithms,”  (2023), arXiv:2303.04796 [quant-ph] .
  6. M. Luo and X. Wang, Science China Physics, Mechanics & Astronomy 57, 1712 (2014).
  7. L. Yeh,  arXiv:2304.12504 .
  8. P. W. Shor, SIAM Journal on Computing 26, 1484 (1997).
  9. L. K. Grover,   (1996), arXiv:quant-ph/9605043 .
  10. A. Steane, Proceedings: Mathematical, Physical and Engineering Sciences 452, 2551 (1996).
  11. A. R. Calderbank and P. W. Shor, Phys. Rev. A 54, 1098 (1996).
  12. J. Roffe, Contemporary Physics 60, 226–245 (2019).
  13. C. J. Wood and J. M. Gambetta, Phys. Rev. A 97, 032306 (2018).
  14. N. Anders Petersson and F. Garcia, SIAM Journal on Scientific Computing 44, A3592–A3616 (2022).
  15. M. R. Frey, Quantum Information Processing 15, 3919 (2016).
  16. L. Mandelstam and I. Tamm, “The uncertainty relation between energy and time in non-relativistic quantum mechanics,” in Selected Papers, edited by B. M. Bolotovskii, V. Y. Frenkel,  and R. Peierls (Springer Berlin Heidelberg, 1991) pp. 115–123.
  17. M. A. Nielsen, Physics Letters A 303, 249–252 (2002).
  18. Y. Nesterov, Proceedings of the USSR Academy of Sciences 269, 543 (1983).
  19. K. Feng and M. Qin, “Symplectic Runge-Kutta methods,”  (Springer Berlin Heidelberg, 2010) pp. 277–364.
  20. https://github.com/b-basyildiz/QuOpt​ .
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com