Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

COMBHelper: A Neural Approach to Reduce Search Space for Graph Combinatorial Problems (2312.09086v2)

Published 14 Dec 2023 in cs.LG and cs.NE

Abstract: Combinatorial Optimization (CO) problems over graphs appear routinely in many applications such as in optimizing traffic, viral marketing in social networks, and matching for job allocation. Due to their combinatorial nature, these problems are often NP-hard. Existing approximation algorithms and heuristics rely on the search space to find the solutions and become time-consuming when this space is large. In this paper, we design a neural method called COMBHelper to reduce this space and thus improve the efficiency of the traditional CO algorithms based on node selection. Specifically, it employs a Graph Neural Network (GNN) to identify promising nodes for the solution set. This pruned search space is then fed to the traditional CO algorithms. COMBHelper also uses a Knowledge Distillation (KD) module and a problem-specific boosting module to bring further efficiency and efficacy. Our extensive experiments show that the traditional CO algorithms with COMBHelper are at least 2 times faster than their original versions.

Citations (4)

Summary

We haven't generated a summary for this paper yet.