Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

All genuinely entangled stabilizer subspaces are multipartite fully nonlocal (2312.08757v2)

Published 14 Dec 2023 in quant-ph

Abstract: Understanding which entangled states give rise to Bell nonlocality and thus are resourceful in the device-independent framework is a long-stanging unresolved problem. Here we establish the equivalence between genuine entanglement and genuine nonlocality for a broad class of multipartite (pure and mixed) states originating from the stabilizer formalism. In fact, we prove that any (mixed) stabilizer state defined on a genuinely entangled subspace is multipartite fully nonlocal meaning that it gives rise to correlations with no contribution from local hidden variable models of any type. Importantly, we also derive a lower bound on genuine nonlocality content of arbitrary multipartite states, opening the door to its experimental estimation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. C. H. Bennett and G. Brassard, Quantum cryptography: Public key distribution and coin tossing, In Proceedings of IEEE International Conference on Computers, Systems and Signal Processing 175, 8 (1984).
  2. A. K. Ekert, Quantum cryptography based on bell’s theorem, Phys. Rev. Lett. 67, 661 (1991).
  3. N. Gisin, Bell’s inequality holds for all non-product states, Phys. Lett. A 154, 201 (1991).
  4. N. Gisin and A. Peres, Maximal violation of bell’s inequality for arbitrarily large spin, Phys. Lett. A 162, 15 (1992).
  5. R. F. Werner, Quantum states with einstein-podolsky-rosen correlations admitting a hidden-variable model, Phys. Rev. A 40, 4277 (1989).
  6. J. Barrett, Nonsequential positive-operator-valued measurements on entangled mixed states do not always violate a bell inequality, Phys. Rev. A 65, 042302 (2002).
  7. S. Popescu and D. Rohrlich, Generic quantum nonlocality, Phys. Lett. A 166, 293 (1992).
  8. M. Gachechiladze and O. Gühne, Completing the proof of “generic quantum nonlocality”, Phys. Lett. A 381, 1281 (2017).
  9. S. Yu and C. H. Oh, Tripartite entangled pure states are tripartite nonlocal, arXiv:1306.5330  (2013).
  10. D. E. Gottesman, Stabilizer codes and quantum error correction, Ph. D. dissertation  (1997).
  11. M. Demianowicz and R. Augusiak, From unextendible product bases to genuinely entangled subspaces, Phys. Rev. A 98, 012313 (2018).
  12. O. Makuta and R. Augusiak, Self-testing maximally-dimensional genuinely entangled subspaces within the stabilizer formalism, New J. Phys. 23, 043042 (2021).
  13. J. S. Bell, On the Einstein-Podolsky-Rosen paradox, Physics Physique Fizika 1, 195 (1964).
  14. A. C. Elitzur, S. Popescu, and D. Rohrlich, Quantum nonlocality for each pair in an ensemble, Phys. Lett. A 162, 25 (1992).
  15. J. A. Smolin, Four-party unlockable bound entangled state, Phys. Rev. A 63, 032306 (2001).
  16. O. Makuta, B. Kuzaka, and R. Augusiak, Fully non-positive-partial-transpose genuinely entangled subspaces, Quantum 7, 915 (2023).
  17. J. Barrett, A. Kent, and S. Pironio, Maximally nonlocal and monogamous quantum correlations, Phys. Rev. Lett. 97 (2006).
  18. F. J. Curchod, M. L. Almeida, and A. Acín, A versatile construction of bell inequalities for the multipartite scenario, New J. Phys. 21, 023016 (2019).
  19. M. Englbrecht, T. Kraft, and B. Kraus, Transformations of stabilizer states in quantum networks, Quantum 6, 846 (2022).
  20. V. Gheorghiu, Standard form of qudit stabilizer groups, Phys. Lett. A 378, 505 (2014).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com