All genuinely entangled stabilizer subspaces are multipartite fully nonlocal (2312.08757v2)
Abstract: Understanding which entangled states give rise to Bell nonlocality and thus are resourceful in the device-independent framework is a long-stanging unresolved problem. Here we establish the equivalence between genuine entanglement and genuine nonlocality for a broad class of multipartite (pure and mixed) states originating from the stabilizer formalism. In fact, we prove that any (mixed) stabilizer state defined on a genuinely entangled subspace is multipartite fully nonlocal meaning that it gives rise to correlations with no contribution from local hidden variable models of any type. Importantly, we also derive a lower bound on genuine nonlocality content of arbitrary multipartite states, opening the door to its experimental estimation.
- C. H. Bennett and G. Brassard, Quantum cryptography: Public key distribution and coin tossing, In Proceedings of IEEE International Conference on Computers, Systems and Signal Processing 175, 8 (1984).
- A. K. Ekert, Quantum cryptography based on bell’s theorem, Phys. Rev. Lett. 67, 661 (1991).
- N. Gisin, Bell’s inequality holds for all non-product states, Phys. Lett. A 154, 201 (1991).
- N. Gisin and A. Peres, Maximal violation of bell’s inequality for arbitrarily large spin, Phys. Lett. A 162, 15 (1992).
- R. F. Werner, Quantum states with einstein-podolsky-rosen correlations admitting a hidden-variable model, Phys. Rev. A 40, 4277 (1989).
- J. Barrett, Nonsequential positive-operator-valued measurements on entangled mixed states do not always violate a bell inequality, Phys. Rev. A 65, 042302 (2002).
- S. Popescu and D. Rohrlich, Generic quantum nonlocality, Phys. Lett. A 166, 293 (1992).
- M. Gachechiladze and O. Gühne, Completing the proof of “generic quantum nonlocality”, Phys. Lett. A 381, 1281 (2017).
- S. Yu and C. H. Oh, Tripartite entangled pure states are tripartite nonlocal, arXiv:1306.5330 (2013).
- D. E. Gottesman, Stabilizer codes and quantum error correction, Ph. D. dissertation (1997).
- M. Demianowicz and R. Augusiak, From unextendible product bases to genuinely entangled subspaces, Phys. Rev. A 98, 012313 (2018).
- O. Makuta and R. Augusiak, Self-testing maximally-dimensional genuinely entangled subspaces within the stabilizer formalism, New J. Phys. 23, 043042 (2021).
- J. S. Bell, On the Einstein-Podolsky-Rosen paradox, Physics Physique Fizika 1, 195 (1964).
- A. C. Elitzur, S. Popescu, and D. Rohrlich, Quantum nonlocality for each pair in an ensemble, Phys. Lett. A 162, 25 (1992).
- J. A. Smolin, Four-party unlockable bound entangled state, Phys. Rev. A 63, 032306 (2001).
- O. Makuta, B. Kuzaka, and R. Augusiak, Fully non-positive-partial-transpose genuinely entangled subspaces, Quantum 7, 915 (2023).
- J. Barrett, A. Kent, and S. Pironio, Maximally nonlocal and monogamous quantum correlations, Phys. Rev. Lett. 97 (2006).
- F. J. Curchod, M. L. Almeida, and A. Acín, A versatile construction of bell inequalities for the multipartite scenario, New J. Phys. 21, 023016 (2019).
- M. Englbrecht, T. Kraft, and B. Kraus, Transformations of stabilizer states in quantum networks, Quantum 6, 846 (2022).
- V. Gheorghiu, Standard form of qudit stabilizer groups, Phys. Lett. A 378, 505 (2014).