Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Personalized Path Recourse for Reinforcement Learning Agents (2312.08724v3)

Published 14 Dec 2023 in cs.LG and cs.AI

Abstract: This paper introduces Personalized Path Recourse, a novel method that generates recourse paths for a reinforcement learning agent. The goal is to edit a given path of actions to achieve desired goals (e.g., better outcomes compared to the agent's original path) while ensuring a high similarity to the agent's original paths and being personalized to the agent. Personalization refers to the extent to which the new path is tailored to the agent's observed behavior patterns from their policy function. We train a personalized recourse agent to generate such personalized paths, which are obtained using reward functions that consider the goal, similarity, and personalization. The proposed method is applicable to both reinforcement learning and supervised learning settings for correcting or improving sequences of actions or sequences of data to achieve a pre-determined goal. The method is evaluated in various settings. Experiments show that our model not only recourses for a better outcome but also adapts to different agents' behavior.

Summary

We haven't generated a summary for this paper yet.