Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

\emph{Lifted} RDT based capacity analysis of the 1-hidden layer treelike \emph{sign} perceptrons neural networks (2312.08257v1)

Published 13 Dec 2023 in stat.ML, cond-mat.dis-nn, cs.IT, cs.LG, math-ph, math.IT, math.MP, and math.PR

Abstract: We consider the memorization capabilities of multilayered \emph{sign} perceptrons neural networks (SPNNs). A recent rigorous upper-bounding capacity characterization, obtained in \cite{Stojnictcmspnncaprdt23} utilizing the Random Duality Theory (RDT), demonstrated that adding neurons in a network configuration may indeed be very beneficial. Moreover, for particular \emph{treelike committee machines} (TCM) architectures with $d\leq 5$ neurons in the hidden layer, \cite{Stojnictcmspnncaprdt23} made a very first mathematically rigorous progress in over 30 years by lowering the previously best known capacity bounds of \cite{MitchDurb89}. Here, we first establish that the RDT bounds from \cite{Stojnictcmspnncaprdt23} scale as $\sim \sqrt{d}$ and can not on their own \emph{universally} (over the entire range of $d$) beat the best known $\sim \log(d)$ scaling of the bounds from \cite{MitchDurb89}. After recognizing that the progress from \cite{Stojnictcmspnncaprdt23} is therefore promising, but yet without a complete concretization, we then proceed by considering the recently developed fully lifted RDT (fl RDT) as an alternative. While the fl RDT is indeed a powerful juggernaut, it typically relies on heavy numerical evaluations. To avoid such heavy numerics, we here focus on a simplified, \emph{partially lifted}, variant and show that it allows for very neat, closed form, analytical capacity characterizations. Moreover, we obtain the concrete capacity bounds that \emph{universally} improve for \emph{any} $d$ over the best known ones of \cite{MitchDurb89}.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com