Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SVInvNet: A Densely Connected Encoder-Decoder Architecture for Seismic Velocity Inversion (2312.08194v1)

Published 13 Dec 2023 in cs.LG, cs.CV, and physics.geo-ph

Abstract: This study presents a deep learning-based approach to seismic velocity inversion problem, focusing on both noisy and noiseless training datasets of varying sizes. Our Seismic Velocity Inversion Network (SVInvNet) introduces a novel architecture that contains a multi-connection encoder-decoder structure enhanced with dense blocks. This design is specifically tuned to effectively process complex information, crucial for addressing the challenges of non-linear seismic velocity inversion. For training and testing, we created diverse seismic velocity models, including multi-layered, faulty, and salt dome categories. We also investigated how different kinds of ambient noise, both coherent and stochastic, and the size of the training dataset affect learning outcomes. SVInvNet is trained on datasets ranging from 750 to 6,000 samples and is tested using a large benchmark dataset of 12,000 samples. Despite its fewer parameters compared to the baseline, SVInvNet achieves superior performance with this dataset. The outcomes of the SVInvNet are additionally compared to those of the Full Waveform Inversion (FWI) method. The comparative analysis clearly reveals the effectiveness of the proposed model.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. E. Baysal, D. D. Kosloff, and J. W. C. Sherwood, “Reverse time migration.” in Geophysics, vol. 48, no. 11, 1983, pp. 1514–1524.
  2. A. Tarantola, “Inversion of seismic reflection data in the acoustic approximation.” in Geophysics, vol. 48, no. 8, 1984, pp. 1259–1266.
  3. O. Gauthier, J. Virieux, and A. Tarantola, “Two-dimensional nonlinear inversion of seismic waveforms:numerical results.” in Geophysics, vol. 51, no. 7, 1986, pp. 1387–1403.
  4. G. S. Pan, R. A. Phinney, and R. I. Odom, “Full-waveform inversion of plane-wave seismograms in stratified acoustic media:theory and feasibility.” in Geophysics, vol. 53, no. 1, 1988, pp. 21–31.
  5. J. Virieux and S. Operto, “An overview of full-waveform inversion in exploration geophysics.” in Geophysics, vol. 47, no. 6, 2009, pp. WCC127–WCC152.
  6. C. Bunks, F. M. Saleck, S. Zaleski, and G. Chavent, “Multiscale seismic waveform inversion.” in Geophysics, vol. 60, no. 5, 1995, p. 1457–1473.
  7. L. Sirgue and R. G. Pratt, “Efficient waveform inversion and imaging. astrategy for selecting temporal frequencies.” in Geophysics, vol. 69, no. 1, 2004, p. 231–248.
  8. Y. Wu, Y. Lin, and Z. Zhou, “Inversionnet: Accurate and efficient seismic waveform inversion with convolutional neural networks.” in In Proc. SEG Tech. Program Expanded Abstr, 2018, p. 2096–2100.
  9. S. Li, B. Liu, Y. Ren, Y. Chen, S. Yang, Y. Wange, and P. Jiang, “Deep-learning inversion of seismic data.” in IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 3, 2020, pp. 2135–2149.
  10. B. Liu, S. Yang, Y. Ren, X. Xu, P. Jiang, and Y. Chen, “Deep-learning seismic full-waveform inversion for realistic structural models.” in Geophysics, vol. 86, no. 1, 2021, pp. R31–R44.
  11. X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks.” in AISTATS, ser. JMLR Proceedings, Y. W. Teh and D. M. Titterington, Eds., vol. 9.   JMLR.org, 2010, pp. 249–256. [Online]. Available: http://dblp.uni-trier.de/db/journals/jmlr/jmlrp9.html#GlorotB10
  12. G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 4700–4708.
  13. S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and D. Terzopoulos, “Image segmentation using deep learning: A survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 7, pp. 3523–3542, 2022.
  14. B. Moseley, A. Markham, and T. Nissen-Meyer, “Fast approximate simulation of seismic waves with deep learning,” 2018.
  15. B. Hall, “Facies classification using machine learning,” The Leading Edge, vol. 37, no. 10, pp. 58–66, 2016.
  16. J.-S. Lim, “Reservoir properties determination using fuzzy logic and neural networks from well data in offshore korea,” Journal of Petroleum Science and Engineering, vol. 49, no. 3, pp. 182–192, 2005, an Introduction to Artificial Intelligence Applications in Petroleum Exploration and Production. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0920410505001403
  17. O. Ovcharenko, V. Kazei, M. Kalita, D. Peter, and T. Alkhalifah, “Deep learning for low-frequency extrapolation from multioffset seismic data.” Geophysics, vol. 84, no. 6, pp. R989–R1001, 2019.
  18. O. M. Saad and Y. Chen, “Deep denoising autoencoder for seismic random noise attenuation,” Geophysics, vol. 85, no. 4, pp. V367–V376, 06 2020. [Online]. Available: https://doi.org/10.1190/geo2019-0468.1
  19. G. Roethe and A. Tarantola, “Use of neural networks for inversion of seismic data,” SEG Tech. Program Expanded Abstr., pp. 302–305, 1991.
  20. W. Lewis and D. Vigh, “Deep learning prior models from seismic images for full-waveform inversion,” vol. All Days, pp. SEG–2017–17 627 643, 09 2017.
  21. M. Araya-Polo, J. Jennings, A. Adler, and T. Dahlke, “Deep-learning tomography.” in Leading Edge, vol. 37, no. 1, 2018, pp. 58–66.
  22. F. Yang and J. Ma, “Deep-learning inversion: A next-generation seismic velocity model building method,” Geophysics, vol. 84, no. 4, pp. R583–R599, 06 2019. [Online]. Available: https://doi.org/10.1190/geo2018-0249.1
  23. S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–1359, 2010.
  24. M. K. Sen and P. L. Stoffa, “Rapid sampling of model space using genetic algorithms: examples from seismic waveform inversion,” Geophysical Journal International, vol. 108, no. 1, pp. 281–292, 01 1992. [Online]. Available: https://doi.org/10.1111/j.1365-246X.1992.tb00857.x
  25. P. Lailly, “The seismic inverse problem as a sequence of before stack migrations..” in Conference on Inverse Scattering. Theory and Application, J. B. Bednar, R. Render, E. Robinson, and A. Weglein, Eds.   SIAM, 1983, pp. 206–220.
  26. K. R. Kelly, R. W. Ward, S. Treitel, and R. M. Alford, “Synthetic seismograms: A finite-difference approach,” Geophysics, vol. 41, no. 1, pp. 2–27, 1976.
  27. R. M. Alford, K. R. Kelly, and D. M. Boore, “Accuracy of finite-difference modeling of the acoustic wave equation.” Geophysics, vol. 39, no. 6, pp. 834–842, 1974.
  28. L. R. Lines, R. Slawinski, and R. P. Bording, “A recipe for stability of finite-difference wave-equation computations,” Geophysics, vol. 64, no. 3, pp. 967–969, 06 1999. [Online]. Available: https://doi.org/10.1190/1.1444605
  29. R. W. Clayton and B. Engquist, “Absorbing boundary conditions for wave-equation migration,” Geophysics, vol. 45, no. 5, pp. 895–904, 05 1980. [Online]. Available: https://doi.org/10.1190/1.1441094
  30. S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” in Proceedings of the 32nd International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, F. Bach and D. Blei, Eds., vol. 37.   Lille, France: PMLR, 07–09 Jul 2015, pp. 448–456. [Online]. Available: https://proceedings.mlr.press/v37/ioffe15.html
  31. X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, ser. Proceedings of Machine Learning Research, G. Gordon, D. Dunson, and M. Dudík, Eds., vol. 15.   Fort Lauderdale, FL, USA: PMLR, 11–13 Apr 2011, pp. 315–323. [Online]. Available: https://proceedings.mlr.press/v15/glorot11a.html
  32. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  33. A. Richardson, “Deepwave,” Sep. 2023. [Online]. Available: https://github.com/ar4/deepwave
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com