Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ensuring End-to-End Security with Fine-grained Access Control for Connected and Autonomous Vehicles (2312.07898v2)

Published 13 Dec 2023 in cs.CR

Abstract: As advanced V2X applications emerge in the connected and autonomous vehicle (CAV), the data communications between in-vehicle end-devices and outside nodes increase, which make the end-to-end (E2E) security to in-vehicle end-devices as the urgent issue to be handled. However, the E2E security with fine-grained access control still remains as a challenging issue for resource-constrained end-devices since the existing security solutions require complicated key management and high resource consumption. Therefore, we propose a practical and secure vehicular communication protocol for the E2E security based on a new attribute-based encryption (ABE) scheme. In our scheme, the outsourced computation is provided for encryption, and the computation cost for decryption constantly remains small, regardless of the number of attributes. The policy privacy can be ensured by the proposed ABE to support privacy-sensitive V2X applications, and the existing identity-based signature for outsourced signing is newly reconstructed. Our scheme achieves the confidentiality, message authentication, identity anonymity, unlinkability, traceability, and reconfigurable outsourced computation, and we also show the practical feasibility of our protocol via the performance evaluation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. Y. Zhang, G. Zhang, R. Fierro, and Y. Yang, “Force-driven traffic simulation for a future connected autonomous vehicle-enabled smart transportation system,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 7, pp. 2221–2233, Jul. 2018.
  2. J. Petit and S. E. Shladover, “Potential cyberattacks on automated vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 2, pp. 546–556, Apr. 2015.
  3. P. Wang, C.-M. Chen, S. Kumari, M. Shojafar, R. Tafazolli, and Y.-N. Liu, “HDMA: hybrid D2D message authentication scheme for 5G-enabled VANETs,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 8, pp. 5071–5080, Aug. 2020.
  4. J. Shao, X. Lin, R. Lu, and C. Zuo, “A threshold anonymous authentication protocol for VANETs,” IEEE Trans. Veh. Technol., vol. 65, no. 3, pp. 1711–1720, Mar. 2016.
  5. P. Vijayakumar, M. Azees, A. Kannan, and L. J. Deborah, “Dual authentication and key management techniques for secure data transmission in vehicular ad hoc networks,” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 4, pp. 1015–1028, Apr. 2016.
  6. H. Goumidi, S. Harous, Z. Aliouat, and A. M. Gueroui, “Lightweight secure authentication and key distribution scheme for vehicular cloud computing,” Symmetry, vol. 13, no. 3, p. 484, Jan. 2021.
  7. J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-based encryption,” in Proc. IEEE Symposium on Security and Privacy, May 2007, pp. 321–334.
  8. C. Yang, P. Jiang, and L. Zhu, “Accelerating decentralized and partial-privacy data access for vanet via online/offline functional encryption,” IEEE Trans. Veh. Technol., vol. 71, no. 8, pp. 8944–8954, Aug. 2022.
  9. A. Kapadia, P. P. Tsang, and S. Smith, “Attribute-based publishing with hidden credentials and hidden policies,” in Proc. Netw. Distrib. Syst. Secur. Symp. (NDSS), San Diego, CA, USA, Feb. 2007, pp. 1–14.
  10. J. K. Liu, J. Baek, J. Zhou, Y. Yang, and J. W. Wong, “Efficient online/offline identity-based signature for wireless sensor network,” Int. J. Inf. Secur., vol. 9, no. 4, pp. 287–296, Jun. 2010.
  11. “Vector.” [Online]. Available: https://www.vector.com
  12. Trusted Computing Group, “Trusted platform module (TPM) 2.0 library specification.” [Online]. Available: https://trustedcomputinggroup.org/
  13. M. Bellare and P. Rogaway, “Entity authentication and key distribution,” in Proc. Annu. Int. Cryptol. Conf. (CRYPTO), Santa Barbara, CA, USA, Aug. 1993, pp. 1–18.
  14. M. C. Gorantla, C. Boyd, and J. M. G. Nieto, “Attribute-based authenticated key exchange,” in Proc. Australas. Conf. Inf. Secur. Priv. (ACSIP), Sydney, NSW, Australia, Jul. 2010, pp. 1–18.
  15. M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash functions for message authentication,” in Proc. Annu. Int. Cryptol. Conf. (CRYPTO), Santa Barbara, CA, USA, Aug. 1996, pp. 1–15.
  16. M. Luby and C. Rackoff, “How to construct pseudorandom permutations from pseudorandom functions,” SIAM J. Comput., vol. 17, no. 2, pp. 373–386, Mar. 1988.
  17. D. Yu, R.-H. Hsu, J. Lee, and S. Lee, “EC-SVC: Secure CAN bus in-vehicle communications with fine-grained access control based on edge computing,” IEEE Trans. Inf. Forensics Secur., vol. 17, no. 4, pp. 1388–1403, 2022.
  18. “The EVITA Project,” 2008. [Online]. Available: http://evita-project/org
  19. Y. Tsiounis and M. Yung, “On the security of ElGamal based encryption,” in Proc. Int. Workshop Pract. Theory Public Key Cryptogr. (PKC), Yokohama, Japan, Feb. 1998, pp. 1–18.
  20. F. Hartwich, “CAN with flexible data-rate,” in Proc. Int. CAN Conf. (iCC), Hambach, Germany, Mar. 2012, pp. 1–9.
  21. S. Woo, H. J. Jo, I. S. Kim, and D. H. Lee, “A practical security architecture for in-vehicle CAN-FD,” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 8, pp. 2248–2261, Aug. 2016.
Citations (2)

Summary

We haven't generated a summary for this paper yet.