Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The hardness of quantum spin dynamics (2312.07658v1)

Published 12 Dec 2023 in quant-ph, cond-mat.stat-mech, and cs.CC

Abstract: Recent experiments demonstrated quantum computational advantage in random circuit sampling and Gaussian boson sampling. However, it is unclear whether these experiments can lead to practical applications even after considerable research effort. On the other hand, simulating the quantum coherent dynamics of interacting spins has been considered as a potential first useful application of quantum computers, providing a possible quantum advantage. Despite evidence that simulating the dynamics of hundreds of interacting spins is challenging for classical computers, concrete proof is yet to emerge. We address this problem by proving that sampling from the output distribution generated by a wide class of quantum spin Hamiltonians is a hard problem for classical computers. Our proof is based on the Taylor series of the output probability, which contains the permanent of a matrix as a coefficient when bipartite spin interactions are considered. We devise a classical algorithm that extracts the coefficient using an oracle estimating the output probability. Since calculating the permanent is #P-hard, such an oracle does not exist unless the polynomial hierarchy collapses. With an anticoncentration conjecture, the hardness of the sampling task is also proven. Based on our proof, we estimate that an instance involving about 200 spins will be challenging for classical devices but feasible for intermediate-scale quantum computers with fault-tolerant qubits.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. D. Hangleiter and J. Eisert, Computational advantage of quantum random sampling, Rev. Mod. Phys. 95, 035001 (2023).
  2. S. Aaronson and A. Arkhipov, The computational complexity of linear optics, Theory Comput. 9, 143 (2013).
  3. M. J. Bremner, A. Montanaro, and D. J. Shepherd, Average-case complexity versus approximate simulation of commuting quantum computations, Phys. Rev. Lett. 117, 080501 (2016).
  4. A. L. Fetter and J. D. Walecka, Quantum theory of many-particle systems (McGraw-Hill, 1971).
  5. W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Physical review 140, A1133 (1965).
  6. N. Ashcroft and N. Mermin, Solid State Physics, HRW international editions (Holt, Rinehart and Winston, 1976).
  7. I. Levine, Quantum Chemistry, Pearson advanced chemistry series (Pearson, 2014).
  8. A. Y. Kitaev, A. Shen, and M. N. Vyalyi, Classical and quantum computation, Graduate Studies in Mathematics No. 47 (American Mathematical Soc., 2002).
  9. A. D. Bookatz, Qma-complete problems, Quantum Info. Comput. 14, 361–383 (2014).
  10. C. Gross and I. Bloch, Quantum simulations with ultracold atoms in optical lattices, Science 357, 995 (2017).
  11. M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50, 888 (1994).
  12. X. Gao, S.-T. Wang, and L.-M. Duan, Quantum supremacy for simulating a translation-invariant ising spin model, Phys. Rev. Lett. 118, 040502 (2017).
  13. B. Fefferman, M. Foss-Feig, and A. V. Gorshkov, Exact sampling hardness of Ising spin models, Phys. Rev. A 96, 032324 (2017).
  14. B. Peropadre, A. Aspuru-Guzik, and J. J. García-Ripoll, Equivalence between spin Hamiltonians and boson sampling, Phys. Rev. A 95, 032327 (2017).
  15. T. Begušić and G. K. Chan, Fast classical simulation of evidence for the utility of quantum computing before fault tolerance, arXiv preprint arXiv:2306.16372  (2023).
  16. R. Movassagh, The hardness of random quantum circuits, Nat. Phys. , 1 (2023).
  17. H. Krovi, Average-case hardness of estimating probabilities of random quantum circuits with a linear scaling in the error exponent, arXiv preprint arXiv:2206.05642  (2022).
  18. J. M. Arrazola, From NISQ to ISQ, https://pennylane.ai/blog/2023/06/from-nisq-to-isq/, posted: 06-21-2023.
  19. E. T. Campbell, Early fault-tolerant simulations of the hubbard model, Quantum Sci. Technol. 7, 015007 (2021).
  20. J. Liesen and Z. Strakos, Krylov subspace methods: principles and analysis (Numerical Mathematics and Scie, 2013).
  21. S. Arora and B. Barak, Computational complexity: a modern approach (Cambridge University Press, 2009).
  22. A. A. Sherstov, Making polynomials robust to noise, Theory of Computing 9, 593 (2013).
  23. D. Kane, S. Karmalkar, and E. Price, Robust polynomial regression up to the information theoretic limit, in 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS) (IEEE, 2017) pp. 391–402.
  24. Y. Kondo, R. Mori, and R. Movassagh, Quantum supremacy and hardness of estimating output probabilities of quantum circuits, in 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS) (IEEE, 2022) pp. 1296–1307.
  25. L. J. Stockmeyer, On approximation algorithms for #P, SIAM J. Comput. 14, 849 (1985).
  26. M. J. Bremner, A. Montanaro, and D. J. Shepherd, Achieving quantum supremacy with sparse and noisy commuting quantum computations, Quantum 1, 8 (2017).
  27. R. Blatt and C. F. Roos, Quantum simulations with trapped ions, Nat. Phys. 8, 277 (2012).
  28. F. Pan, K. Chen, and P. Zhang, Solving the sampling problem of the sycamore quantum circuits, Phys. Rev. Lett. 129, 090502 (2022).
  29. P. Lundow and K. Markström, Efficient computation of permanents, with applications to Boson sampling and random matrices, J. Comput. Phys. 455, 110990 (2022).
  30. X. Ni and M. Van den Nest, Commuting quantum circuits: efficiently classical simulations versus hardness results, Quantum Information & Computation 13, 54 (2013).
  31. S. Bravyi, D. Gosset, and R. Movassagh, Classical algorithms for quantum mean values, Nat. Phys. 17, 337 (2021).
  32. A. Björklund, B. Gupt, and N. Quesada, A faster hafnian formula for complex matrices and its benchmarking on a supercomputer, J. Exp. Algorithmics 24, 11 (2019).
  33. J. Huh, A fast quantum algorithm for computing matrix permanent, arXiv preprint arXiv:2205.01328  (2022).
  34. M.-S. Choi, A Quantum Computation Workbook (Springer Cham, 2022).
  35. M. L. Minsky, Computation: Finite and Infinite Machines (Prentice-Hall, Inc., USA, 1967).
  36. L. Welch and E. Berlekamp, Error correction for algebraic block codes, U.S. Patent 4,633,470 (1986).
  37. R. Paturi, On the degree of polynomials that approximate symmetric boolean functions (preliminary version), in Proceedings of the twenty-fourth annual ACM symposium on Theory of computing (1992) pp. 468–474.
  38. E. A. Rakhmanov, Bounds for polynomials with a unit discrete norm, Ann. Math. 165, 55 (2007).
  39. L. Devroye, A. Mehrabian, and T. Reddad, The total variation distance between high-dimensional gaussians with the same mean, arXiv preprint arXiv:1810.08693  (2018).
  40. L. G. Valiant, The complexity of computing the permanent, Theor. Comput. Sci. 8, 189 (1979).
  41. F. G. Brandao, A. W. Harrow, and M. Horodecki, Local random quantum circuits are approximate polynomial-designs, Commun. Math. Phys. 346, 397 (2016).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com