Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 101 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 31 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 109 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 227 tok/s Pro
2000 character limit reached

Distributional Bellman Operators over Mean Embeddings (2312.07358v3)

Published 9 Dec 2023 in stat.ML and cs.LG

Abstract: We propose a novel algorithmic framework for distributional reinforcement learning, based on learning finite-dimensional mean embeddings of return distributions. We derive several new algorithms for dynamic programming and temporal-difference learning based on this framework, provide asymptotic convergence theory, and examine the empirical performance of the algorithms on a suite of tabular tasks. Further, we show that this approach can be straightforwardly combined with deep reinforcement learning, and obtain a new deep RL agent that improves over baseline distributional approaches on the Arcade Learning Environment.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets