An approximation of matrix exponential by a truncated Laguerre series (2312.07291v1)
Abstract: The Laguerre functions $l_{n,\tau}\alpha$, $n=0,1,\dots$, are constructed from generalized Laguerre polynomials. The functions $l_{n,\tau}\alpha$ depend on two parameters: scale $\tau>0$ and order of generalization $\alpha>-1$, and form an orthogonal basis in $L_2[0,\infty)$. Let the spectrum of a square matrix $A$ lie in the open left half-plane. Then the matrix exponential $H_A(t)=e{At}$, $t>0$, belongs to $L_2[0,\infty)$. Hence the matrix exponential $H_A$ can be expanded in a series $H_A=\sum_{n=0}\infty S_{n,\tau,\alpha,A}\,l_{n,\tau}\alpha$. An estimate of the norm $\Bigl\lVert H_A-\sum_{n=0}N S_{n,\tau,\alpha,A}\,l_{n,\tau}\alpha\Bigr\rVert_{L_2[0,\infty)}$ is proposed. Finding the minimum of this estimate over $\tau$ and $\alpha$ is discussed. Numerical examples show that the optimal $\alpha$ is often almost 0, which essentially simplifies the problem.
- M. Abramowitz and I. A. Stegun. Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover Publications, Inc., New York, 1992. Reprint of the 1972 edition.
- H. J. W. Belt and A. C. Brinker, den. Optimal parametrization of truncated generalized Laguerre series. In 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, volume 5, pages 3805–3808, Los Alamitos, California, 1997. The Institute of Electrical and Electronics Engineers, Inc., IEEE Computer Society Press.
- A. C. Brinker, den and H. J. W. Belt. Optimality condition for truncated generalized Laguerre networks. Int. J. Circ. Theory Appl., 23:227–235, 1995.
- G. J. Clowes. Choice of the time-scaling factor for linear system approximation using orthonormal Laguerre functions. IEEE Trans. Automatic Control, 10:487–489, 1965.
- N. Dunford and J. T. Schwartz. Linear operators. Part I. General theory. Wiley Classics Library. John Wiley & Sons, Inc., New York, 1988. Reprint of the 1958 original.
- W. Gautschi. Orthogonal polynomials: computation and approximation. Numerical Mathematics and Scientific Computation. Oxford University Press, New York, 2004. Oxford Science Publications.
- S. K. Godunov. Ordinary differential equations with constant coefficient, volume 169 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1997.
- Matrix computations. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, fourth edition, 2013.
- Function theory of one complex variable, volume 40 of Graduate Studies in Mathematics. Amer. Math. Soc., Providence, RI, third edition, 2006.
- N. J. Higham. Functions of matrices: theory and computation. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008.
- Topics in matrix analysis. Cambridge University Press, Cambridge, 1991.
- Fonctions de la physique mathematique. Centre National de la Recherche Scientifique, Paris, France, 1957.
- T. Kato. Perturbation theory for linear operators. Classics in Mathematics. Springer–Verlag, Berlin, 1995. Reprint of the 1980 edition.
- N. N. Lebedev. Special functions and their applications. Dover Publications, Inc., New York, revised edition, 1972. Unabridged and corrected republication.
- C. Moler and Ch. F. Van Loan. Nineteen dubious ways to compute the exponential of a matrix. SIAM Rev., 20(4):801–836, 1978.
- C. Moler and Ch. F. Van Loan. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev., 45(1):3–49 (electronic), 2003.
- G. Moore. Orthogonal polynomial expansions for the matrix exponential. Linear Algebra Appl., 435(3):537–559, 2011.
- Special functions of mathematical physics: a unified introduction with applications. Birkhäuser Verlag, Basel, 1988.
- Unique condition for generalized Laguerre functions to solve pole position problem. Signal Processing, 108:25–29, 2015.
- T.K. Sarakr and J. Koh. Generation of a wide-band electromagnetic response through a Laguerre expansion using early-time and low-frequency data. IEEE Transactions on Microwave Theory and Techniques, 50(5):1408–1416, 2002.
- Computing exp(−τA)b𝜏𝐴𝑏\exp(-\tau A)broman_exp ( - italic_τ italic_A ) italic_b with Laguerre polynomials. Electron. Trans. Numer. Anal., 37:147–165, 2010.
- Remarks on some associated Laguerre integral results. Appl. Math. Lett., 16(7):1131–1136, 2003.
- G. Szegő. Orthogonal polynomials, volume Vol. XXIII of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, fourth edition, 1975.
- M. Tuma and P. Jura. Impulse response approximation of dead time LTI SISO systems using generalized Laguerre functions. In AIP Conference Proceedings, volume 2116, page 310010. AIP Publishing LLC, 2019.
- J. Vlach and K. Singhal. Computer methods for circuit analysis and design. Van Nostrand Reinhold Electrical/Computer Science and Engineering Series. Kluwer Academic Publishers, New York, second edition, 1993.
- Matritsy i vychisleniya [Matrices and computations]. “Nauka”, Moscow, 1984. (in Russian).
- S. Wolfram. The Mathematica book. Wolfram Media, New York, fifth edition, 2003.