Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Chemically Active Wetting (2312.07239v1)

Published 12 Dec 2023 in cond-mat.soft and physics.bio-ph

Abstract: Wetting of liquid droplets on passive surfaces is ubiquitous in our daily lives, and the governing physical laws are well-understood. When surfaces become active, however, the governing laws of wetting remain elusive. Here we propose chemically active wetting as a new class of active systems where the surface is active due to a binding process that is maintained away from equilibrium. We derive the corresponding non-equilibrium thermodynamic theory and show that active binding fundamentally changes the wetting behavior, leading to steady, non-equilibrium states with droplet shapes reminiscent of a pancake or a mushroom. The origin of such anomalous shapes can be explained by mapping to electrostatics, where pairs of binding sinks and sources correspond to electrostatic dipoles along the triple line. This is an example of a more general analogy, where localized chemical activity gives rise to a multipole field of the chemical potential. The underlying physics is relevant for cells, where droplet-forming proteins can bind to membranes accompanied by the turnover of biological fuels.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. T. Young, An essay on the cohesion of fluids, Phil. Trans. R. Soc. 95, 65 (1805).
  2. A. Dupré and P. Dupré, Théorie mécanique de la chaleur (Gauthier-Villars, 1869).
  3. P. G. de Gennes, Wetting: statics and dynamics, Rev. Mod. Phys. 57, 827 (1985).
  4. I. Dević, J. Encarnación Escobar, and D. Lohse, Equilibrium drop shapes on a tilted substrate with a chemical step, Langmuir 35, 3880 (2019).
  5. Y. Zhao and H. Zhang, Phase separation in membrane biology: The interplay between membrane-bound organelles and membraneless condensates., Dev Cell 55, 30 (2020).
  6. H. Kusumaatmaja, A. I. May, and R. L. Knorr, Intracellular wetting mediates contacts between liquid compartments and membrane-bound organelles, Journal of Cell Biology 220, e202103175 (2021).
  7. K. Pombo-García, C. Martin-Lemaitre, and A. Honigmann, Wetting of junctional condensates along the apical interface promotes tight junction belt formation, bioRxiv , 2022 (2022).
  8. J. Berry, C. P. Brangwynne, and M. Haataja, Physical principles of intracellular organization via active and passive phase transitions, Reports on Progress in Physics 81, 046601 (2018).
  9. N. Ziethen, J. Kirschbaum, and D. Zwicker, Nucleation of chemically active droplets, Phys. Rev. Lett. 130, 248201 (2023).
  10. R. Seyboldt and F. Jülicher, Role of hydrodynamic flows in chemically driven droplet division, New J. Phys. 20, 105010 (2018).
  11. J. Bauermann, C. A. Weber, and F. Jülicher, Energy and matter supply for active droplets, Ann. Phys. 534, 2200132 (2022a).
  12. D. Zwicker, A. A. Hyman, and F. Jülicher, Suppression of ostwald ripening in active emulsions, Physical Review E 92, 012317 (2015).
  13. J. Kirschbaum and D. Zwicker, Controlling biomolecular condensates via chemical reactions, Journal of The Royal Society Interface 18, 20210255 (2021).
  14. A. Bray, Theory of phase-ordering kinetics, Advances in Physics 43, 357 (1994), https://doi.org/10.1080/00018739400101505 .
  15. L. B. Case, J. A. Ditlev, and M. K. Rosen, Regulation of transmembrane signaling by phase separation, Annual review of biophysics 48, 465 (2019).
  16. Y. Tsori and P.-G. de Gennes, Self-trapping of a single bacterium in its own chemoattractant, EPL 66, 599 (2004).
  17. D. Deviri and S. A. Safran, Physical theory of biological noise buffering by multicomponent phase separation, Proc. Natl. Acad. Sci. U.S.A. 118, e2100099118 (2021).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com