SeasFire as a Multivariate Earth System Datacube for Wildfire Dynamics (2312.07199v2)
Abstract: The global occurrence, scale, and frequency of wildfires pose significant threats to ecosystem services and human livelihoods. To effectively quantify and attribute the antecedent conditions for wildfires, a thorough understanding of Earth system dynamics is imperative. In response, we introduce the SeasFire datacube, a meticulously curated spatiotemporal dataset tailored for global sub-seasonal to seasonal wildfire modeling via Earth observation. The SeasFire datacube comprises of 59 variables encompassing climate, vegetation, oceanic indices, and human factors, has an 8-day temporal resolution and a spatial resolution of 0.25${\circ}$, and spans from 2001 to 2021. We showcase the versatility of SeasFire for exploring the variability and seasonality of wildfire drivers, modeling causal links between ocean-climate teleconnections and wildfires, and predicting sub-seasonal wildfire patterns across multiple timescales with a Deep Learning model. We publicly release the SeasFire datacube and appeal to Earth system scientists and Machine Learning practitioners to use it for an improved understanding and anticipation of wildfires.
- McLauchlan, K. K. et al. Fire as a fundamental ecological process: Research advances and frontiers. \JournalTitleJournal of Ecology 108, 2047–2069, 10.1111/1365-2745.13403 (2020).
- United Nations Environment Programme. Number of wildfires to rise by 50% by 2100 and governments are not prepared, experts warn. https://www.unep.org/news-and-stories/press-release/number-wildfires-rise-50-2100-and-governments-are-not-prepared (2022).
- Prescribed fire and its impacts on ecosystem services in the uk. \JournalTitleScience of The Total Environment 624, 691–703, 10.1016/j.scitotenv.2017.12.161 (2018).
- Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. \JournalTitleNature Communications 6, 10.1038/ncomms8537 (2015).
- The effects of wildfire severity and pyrodiversity on bat occupancy and diversity in fire-suppressed forests. \JournalTitleScientific Reports 9, 10.1038/s41598-019-52875-2 (2019).
- Schoennagel, T. et al. Adapt to more wildfire in western north american forests as climate changes. \JournalTitleProceedings of the National Academy of Sciences 114, 4582–4590, 10.1073/pnas.1617464114 (2017).
- Cascio, W. E. Wildland fire smoke and human health. \JournalTitleScience of the Total Environment 624, 586–595, 10.1016/j.scitotenv.2017.12.086 (2018).
- A systematic review of the physical health impacts from non-occupational exposure to wildfire smoke. \JournalTitleEnvironmental Research 136, 120–132, 10.1016/j.envres.2014.10.015 (2015).
- Health effects of wildfire smoke in children and public health tools: a narrative review. \JournalTitleJournal of exposure science & environmental epidemiology 31, 1–20 (2021).
- Beranek, C. T. et al. Severe wildfires promoted by climate change negatively impact forest amphibian metacommunities. \JournalTitleDiversity and Distributions 29, 785–800, 10.1111/ddi.13700 (2023).
- Mega forest fires intensify flood magnitudes in southeast australia. \JournalTitleGeophysical Research Letters 50, 10.1029/2023gl103812 (2023).
- Earthnets: Empowering ai in earth observation, 10.48550/ARXIV.2210.04936 (2022).
- Paving the way to increased interoperability of earth observations data cubes. \JournalTitleData 4, 113, 10.3390/data4030113 (2019).
- Datacubes: Towards space/time analysis-ready data. In Lecture Notes in Geoinformation and Cartography, 269–299, 10.1007/978-3-319-72434-8_14 (Springer International Publishing, 2018).
- Mahecha, M. D. et al. Earth system data cubes unravel global multivariate dynamics. \JournalTitleEarth System Dynamics 11, 201–234, 10.5194/esd-11-201-2020 (2020).
- Loaiza, D. M. et al. Data cubes for earth system research: Challenges ahead. Preprint at https://eartharxiv.org/repository/view/5649/, 10.31223/x58m2v (2023).
- Prapas, I. et al. Deep learning for global wildfire forecasting, 10.48550/ARXIV.2211.00534 (2022).
- Prapas, I. et al. Televit: Teleconnection-driven transformers improve subseasonal to seasonal wildfire forecasting, 10.48550/ARXIV.2306.10940 (2023).
- Earth Data, N. FIRMS Frequently Asked Questions | Earthdata — earthdata.nasa.gov. https://www.earthdata.nasa.gov/faq/firms-faq (2023).
- Climate, E. Esa climate change initiative – fire CCI product user guide. https://climate.esa.int/media/documents/Fire_cci_D4.2_PUG-MODIS_v1.0.pdf (2020).
- Andela, N. et al. The global fire atlas of individual fire size, duration, speed and direction. \JournalTitleEarth System Science Data 11, 529–552, 10.5194/essd-11-529-2019 (2019).
- NIFC. Historic Perimeters Combined 2000-2018 GeoMAC — data-nifc.opendata.arcgis.com. https://data-nifc.opendata.arcgis.com/datasets/nifc::historic-perimeters-combined-2000-2018-geomac/about (2018).
- National Interagency Fire Center. National Interagency Fire Center — data-nifc.opendata.arcgis.com. https://data-nifc.opendata.arcgis.com/search?q=geomac (2019).
- CNFDB. Canadian Wildland Fire Information System | Canadian National Fire Database (CNFDB) — cwfis.cfs.nrcan.gc.ca. https://cwfis.cfs.nrcan.gc.ca/ha/nfdb (2022).
- JRC-EFFIS. Welcome to EFFIS. https://effis.jrc.ec.europa.eu/ (2008).
- Government of Australia. Product catalogue - Geoscience Australia — ecat.ga.gov.au. https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search##/metadata/147763 (2023).
- ArcGIS Australia wildfire Dashboards — arcgis.com. https://www.arcgis.com/apps/dashboards/11e177420af74b1b8c5ecd59ae3a85a4 (2020).
- Short, K. C. Spatial wildfire occurrence data for the united states, 1992-2015 [fpa_fod_20170508]. https://doi.org/10.2737/RDS-2013-0009.4 (2017).
- Sentimental wildfire: a social-physics machine learning model for wildfire nowcasting. \JournalTitleJournal of Computational Social Science 5, 1427–1465, 10.1007/s42001-022-00174-8 (2022).
- Denis, L. A. S. et al. All-hazards dataset mined from the US national incident management system 1999–2020. \JournalTitleScientific Data 10, 10.1038/s41597-023-01955-0 (2023).
- Singla, S. et al. Wildfiredb: An open-source dataset connecting wildfire occurrence with relevant determinants. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks (2021).
- Graff, C. A. Fire-ml: A remotely-sensed daily wildfire forecasting dataset for the contiguous united states. In ICML 2021 Workshop on Tackling Climate Change with Machine Learning (2021).
- Wilkinson, M. D. et al. Addendum: The FAIR guiding principles for scientific data management and stewardship. \JournalTitleScientific Data 6, 10.1038/s41597-019-0009-6 (2019).
- Kopp, S. et al. Achieving the full vision of earth observation data cubes. \JournalTitleData 4, 94, 10.3390/data4030094 (2019).
- The austrian semantic EO data cube infrastructure. \JournalTitleRemote Sensing 13, 4807, 10.3390/rs13234807 (2021).
- Ariza-Porras, C. et al. CDCol: A geoscience data cube that meets colombian needs. In Communications in Computer and Information Science, 87–99, 10.1007/978-3-319-66562-7_7 (Springer International Publishing, 2017).
- Dhu, T. et al. Digital earth australia – unlocking new value from earth observation data. \JournalTitleBig Earth Data 1, 64–74, 10.1080/20964471.2017.1402490 (2017).
- Lewis, A. et al. The australian geoscience data cube — foundations and lessons learned. \JournalTitleRemote Sensing of Environment 202, 276–292, 10.1016/j.rse.2017.03.015 (2017).
- Killough, B. Overview of the open data cube initiative. In IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, 10.1109/igarss.2018.8517694 (IEEE, 2018).
- Giuliani, G. et al. Building an earth observations data cube: lessons learned from the swiss data cube (SDC) on generating analysis ready data (ARD). \JournalTitleBig Earth Data 1, 100–117, 10.1080/20964471.2017.1398903 (2017).
- Lewis, A. et al. CEOS analysis ready data for land (CARD4l) overview. In IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, 10.1109/igarss.2018.8519255 (IEEE, 2018).
- Estupinan-Suarez, L. M. et al. A regional earth system data lab for understanding ecosystem dynamics: An example from tropical south america. \JournalTitleFrontiers in Earth Science 9, 10.3389/feart.2021.613395 (2021).
- xarray: N-D labeled arrays and datasets in Python. \JournalTitlein prep, J. Open Res. Software (2016).
- Mesogeos: A multi-purpose dataset for data-driven wildfire modeling in the mediterranean, 10.48550/ARXIV.2306.05144 (2023).
- Kondylatos, S. et al. Wildfire Danger Prediction and Understanding With Deep Learning. \JournalTitleGeophysical Research Letters 49, e2022GL099368, 10.1029/2022GL099368 (2022). Eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2022GL099368.
- Miles, A. et al. zarr-developers/zarr-python: v2.4.0, 10.5281/zenodo.3773450 (2020).
- Artés, T. et al. A global wildfire dataset for the analysis of fire regimes and fire behaviour. \JournalTitleScientific Data 6, 296, 10.1038/s41597-019-0312-2 (2019). Number: 1 Publisher: Nature Publishing Group.
- Global fire emissions database, version 4.1 (gfedv4). \JournalTitleORNL DAAC 10.3334/ORNLDAAC/1293 (2017).
- Esa fire climate change initiative (fire cci): Modis fire cci burned area pixel product, version 5.1. \JournalTitleCentre for Environmental Data Analysis (CEDA) 10.5285/58F00D8814064B79A0C49662AD3AF537 (2018).
- Global burned area mapping from sentinel-3 synergy and VIIRS active fires. \JournalTitleRemote Sensing of Environment 282, 113298, 10.1016/j.rse.2022.113298 (2022).
- Mcd64a1 modis/terra+aqua burned area monthly l3 global 500m sin grid v006, 10.5067/MODIS/MCD64A1.006 (2015).
- An active-fire based burned area mapping algorithm for the MODIS sensor. \JournalTitleRemote Sensing of Environment 113, 408–420, 10.1016/j.rse.2008.10.006 (2009).
- The collection 6 MODIS active fire detection algorithm and fire products. \JournalTitleRemote Sensing of Environment 178, 31–41, 10.1016/j.rse.2016.02.054 (2016).
- The collection 6 MODIS burned area mapping algorithm and product. \JournalTitleRemote Sensing of Environment 217, 72–85, 10.1016/j.rse.2018.08.005 (2018).
- A comparison of remotely-sensed and inventory datasets for burned area in mediterranean europe. Preprint at https://arxiv.org/abs/1906.06121, 10.48550/ARXIV.1906.06121 (2019).
- About validation-comparison of burned area products. \JournalTitleRemote Sensing 12, 3972, 10.3390/rs12233972 (2020).
- Didan, K. MOD13C1 MODIS/Terra Vegetation Indices 16-Day L3 Global 0.05Deg CMG V006, 10.5067/MODIS/MOD13C1.006 (2015). Type: dataset.
- Hersbach, H. et al. ERA5 hourly data on single levels from 1959 to present., 10.24381/cds.adbb2d47 (2018). Type: dataset.
- CMES. Fire danger indices historical data from the Copernicus Emergency Management Service, 10.24381/CDS.0E89C522 (2019). Type: dataset.
- Kaiser, J. W. et al. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. \JournalTitleBiogeosciences 9, 527–554, 10.5194/bg-9-527-2012 (2012).
- Southern oscillation index (soi) [dataset]. Ropelewski, C. F. and Jones, P. D. (1987): https://journals.ametsoc.org/view/journals/mwre/115/9/1520-0493_1987_115_2161_aeotts_2_0_co_2.xml. Accessed 25.07.2023 from: https://psl.noaa.gov/data/writ/.
- Bivariate enso timeseries [dataset]. Smith, J. and Sardeshmukh, P. (2000): https://rmets.onlinelibrary.wiley.com/doi/10.1002/1097-0088(20001115)20:13%3C1543::AID-JOC579%3E3.0.CO;2-A. Accessed 25.07.2023 from: https://psl.noaa.gov/data/correlation/censo.data.
- Arctic oscillation (ao) [dataset]. Barnston, Anthony G. and Livezey, Robert E. (1987): https://journals.ametsoc.org/view/journals/mwre/115/6/1520-0493_1987_115_1083_csapol_2_0_co_2.xml. Accessed 25.07.2023 from:https://psl.noaa.gov/data/writ/.
- North atlantic oscillation index (nao) [dataset]. Jones Phillip. D., Jonsson T, and Wheeler D. (1997): https://rmets.onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0088(19971115)17:13%3C1433::AID-JOC203%3E3.0.CO;2-P. Accessed 25.07.2023 from: https://psl.noaa.gov/data/writ/.
- East atlantic (ea) [dataset]. Barnston, Anthony G. and Livezey, Robert E. (1987): https://journals.ametsoc.org/view/journals/mwre/115/6/1520-0493_1987_115_1083_csapol_2_0_co_2.xml. Accessed 25.07.2023 from: https://psl.noaa.gov/data/writ/.
- East atlantic (ea) [dataset]. Wallace, John M. and Gutzler, David S. (1981): https://journals.ametsoc.org/view/journals/mwre/109/4/1520-0493_1981_109_0784_titghf_2_0_co_2.xml. Accessed 25.07.2023 from: https://psl.noaa.gov/data/writ/.
- Global mean land/ocean temperature index from nasa/giss [dataset]. Smith Thomas M., et al., (1996): https://journals.ametsoc.org/view/journals/clim/9/6/1520-0442_1996_00_1403_rohsst_2_0_co_2.xml. Accessed 25.07.2023 from: https://data.giss.nasa.gov/gistemp/tabledata_v3/GLB.Ts.txt.
- Niño 3.4 calculated from the hadisst1.1 dataset at noaa/esrl [dataset]. Rayner, N. A. et al., (2003): https://www.metoffice.gov.uk/hadobs/hadisst/HadISST_paper.pdf. Accessed 25.07.2023 from: https://psl.noaa.gov/data/writ/.
- West pacific (wp) [dataset]. Barnston, Anthony G. and Livezey, Robert E. (1987): https://journals.ametsoc.org/view/journals/mwre/115/6/1520-0493_1987_115_1083_csapol_2_0_co_2.xml. Accessed 25.07.2023 from:https://psl.noaa.gov/data/writ/.
- West pacific (wp) [dataset]. Wallace, John M. and Gutzler, David S. (1981): https://journals.ametsoc.org/view/journals/mwre/109/4/1520-0493_1981_109_0784_titghf_2_0_co_2.xml. Accessed 25.07.2023 from:https://psl.noaa.gov/data/writ/.
- East pacific/north pacific oscillation (ep-np) [dataset]. Bell, Gerald D. and Janowiak, John E. (1995): https://journals.ametsoc.org/view/journals/bams/76/5/1520-0477_1995_076_0681_acawtm_2_0_co_2.xml. Accessed 25.07.2023 from: https://psl.noaa.gov/data/writ/.
- Pacific decadal oscillation (pdo) [dataset]. Mantua, Nathan J. and Hare, Steven R. and Zhang, Yuan (1997): https://journals.ametsoc.org/view/journals/bams/78/6/1520-0477_1997_078_1069_apicow_2_0_co_2.xml. Accessed 25.07.2023 from: https://psl.noaa.gov/data/writ/.
- Pacific north american index (pna) [dataset]. Barnston, Anthony G. and Livezey, Robert E. (1987): https://journals.ametsoc.org/view/journals/mwre/115/6/1520-0493_1987_115_1083_csapol_2_0_co_2.xml. Accessed 25.07.2023 from: https://psl.noaa.gov/data/writ/.
- Copernicus Climate Change Service. Land cover classification gridded maps from 1992 to present derived from satellite observations, 10.24381/CDS.006F2C9A (2019). Type: dataset.
- MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V061, 10.5067/MODIS/MOD11A2.061 (2021). Type: dataset.
- MCD15A2H MODIS/Terra+Aqua Leaf Area Index/FPAR 8-day L4 Global 500m SIN Grid V006, 10.5067/MODIS/MCD15A2H.006 (2015). [Dataset].
- Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. \JournalTitleBioScience 67, 534–545, 10.1093/biosci/bix014 (2017).
- for International Earth Science Information Network CIESIN Columbia University, C. Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11 (NASA Socioeconomic Data and Applications Center (SEDAC), 2018).
- ESA Fire Climate Change Initiative (Fire_cci): MODIS Fire_cci Burned Area Grid product, version 5.1, 10.5285/3628CB2FDBA443588155E15DEE8E5352 (2019). Medium: application/xml Version Number: 3.1 Type: dataset.
- Jordahl, K. et al. geopandas/geopandas: v0.8.1, 10.5281/zenodo.3946761 (2020).
- Makie.jl: Flexible high-performance data visualization for Julia. \JournalTitleJournal of Open Source Software 6, 3349, 10.21105/joss.03349 (2021).
- Detecting and quantifying causal associations in large nonlinear time series datasets. \JournalTitleScience Advances 5, 10.1126/sciadv.aau4996 (2019).
- Runge, J. et al. Inferring causation from time series in earth system sciences. \JournalTitleNature Communications 10, 10.1038/s41467-019-10105-3 (2019).
- Pearl, J. Causality, 10.1017/cbo9780511803161 (2009).
- Causation, prediction, and search (2001).
- Li, S. et al. Increasing vapor pressure deficit accelerates land drying. \JournalTitleJournal of Hydrology 625, 130062, 10.1016/j.jhydrol.2023.130062 (2023).
- Almendra-Martín, L. et al. Influence of atmospheric patterns on soil moisture dynamics in Europe. \JournalTitleScience of The Total Environment 846, 157537, 10.1016/j.scitotenv.2022.157537 (2022).
- Climate.gov. Understanding climate variability: The north atlantic oscillation. https://www.climate.gov/news-features/understanding-climate/climate-variability-north-atlantic-oscillation (2009). Retrieved 08, 11, 2022.
- Benassi, M. et al. El niño teleconnection to the euro-mediterranean late-winter: the role of extratropical pacific modulation. \JournalTitleClimate Dynamics 58, 2009–2029, 10.1007/s00382-021-05768-y (2021).
- UNet++: A Nested U-Net Architecture for Medical Image Segmentation, 10.48550/arXiv.1807.10165 (2018).
- Efficientnet: Rethinking model scaling for convolutional neural networks. In International conference on machine learning, 6105–6114, https://doi.org/10.48550/arXiv.1905.11946 (PMLR, 2019).