Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SeasFire as a Multivariate Earth System Datacube for Wildfire Dynamics (2312.07199v2)

Published 12 Dec 2023 in cs.CV

Abstract: The global occurrence, scale, and frequency of wildfires pose significant threats to ecosystem services and human livelihoods. To effectively quantify and attribute the antecedent conditions for wildfires, a thorough understanding of Earth system dynamics is imperative. In response, we introduce the SeasFire datacube, a meticulously curated spatiotemporal dataset tailored for global sub-seasonal to seasonal wildfire modeling via Earth observation. The SeasFire datacube comprises of 59 variables encompassing climate, vegetation, oceanic indices, and human factors, has an 8-day temporal resolution and a spatial resolution of 0.25${\circ}$, and spans from 2001 to 2021. We showcase the versatility of SeasFire for exploring the variability and seasonality of wildfire drivers, modeling causal links between ocean-climate teleconnections and wildfires, and predicting sub-seasonal wildfire patterns across multiple timescales with a Deep Learning model. We publicly release the SeasFire datacube and appeal to Earth system scientists and Machine Learning practitioners to use it for an improved understanding and anticipation of wildfires.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (91)
  1. McLauchlan, K. K. et al. Fire as a fundamental ecological process: Research advances and frontiers. \JournalTitleJournal of Ecology 108, 2047–2069, 10.1111/1365-2745.13403 (2020).
  2. United Nations Environment Programme. Number of wildfires to rise by 50% by 2100 and governments are not prepared, experts warn. https://www.unep.org/news-and-stories/press-release/number-wildfires-rise-50-2100-and-governments-are-not-prepared (2022).
  3. Prescribed fire and its impacts on ecosystem services in the uk. \JournalTitleScience of The Total Environment 624, 691–703, 10.1016/j.scitotenv.2017.12.161 (2018).
  4. Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. \JournalTitleNature Communications 6, 10.1038/ncomms8537 (2015).
  5. The effects of wildfire severity and pyrodiversity on bat occupancy and diversity in fire-suppressed forests. \JournalTitleScientific Reports 9, 10.1038/s41598-019-52875-2 (2019).
  6. Schoennagel, T. et al. Adapt to more wildfire in western north american forests as climate changes. \JournalTitleProceedings of the National Academy of Sciences 114, 4582–4590, 10.1073/pnas.1617464114 (2017).
  7. Cascio, W. E. Wildland fire smoke and human health. \JournalTitleScience of the Total Environment 624, 586–595, 10.1016/j.scitotenv.2017.12.086 (2018).
  8. A systematic review of the physical health impacts from non-occupational exposure to wildfire smoke. \JournalTitleEnvironmental Research 136, 120–132, 10.1016/j.envres.2014.10.015 (2015).
  9. Health effects of wildfire smoke in children and public health tools: a narrative review. \JournalTitleJournal of exposure science & environmental epidemiology 31, 1–20 (2021).
  10. Beranek, C. T. et al. Severe wildfires promoted by climate change negatively impact forest amphibian metacommunities. \JournalTitleDiversity and Distributions 29, 785–800, 10.1111/ddi.13700 (2023).
  11. Mega forest fires intensify flood magnitudes in southeast australia. \JournalTitleGeophysical Research Letters 50, 10.1029/2023gl103812 (2023).
  12. Earthnets: Empowering ai in earth observation, 10.48550/ARXIV.2210.04936 (2022).
  13. Paving the way to increased interoperability of earth observations data cubes. \JournalTitleData 4, 113, 10.3390/data4030113 (2019).
  14. Datacubes: Towards space/time analysis-ready data. In Lecture Notes in Geoinformation and Cartography, 269–299, 10.1007/978-3-319-72434-8_14 (Springer International Publishing, 2018).
  15. Mahecha, M. D. et al. Earth system data cubes unravel global multivariate dynamics. \JournalTitleEarth System Dynamics 11, 201–234, 10.5194/esd-11-201-2020 (2020).
  16. Loaiza, D. M. et al. Data cubes for earth system research: Challenges ahead. Preprint at https://eartharxiv.org/repository/view/5649/, 10.31223/x58m2v (2023).
  17. Prapas, I. et al. Deep learning for global wildfire forecasting, 10.48550/ARXIV.2211.00534 (2022).
  18. Prapas, I. et al. Televit: Teleconnection-driven transformers improve subseasonal to seasonal wildfire forecasting, 10.48550/ARXIV.2306.10940 (2023).
  19. Earth Data, N. FIRMS Frequently Asked Questions | Earthdata — earthdata.nasa.gov. https://www.earthdata.nasa.gov/faq/firms-faq (2023).
  20. Climate, E. Esa climate change initiative – fire CCI product user guide. https://climate.esa.int/media/documents/Fire_cci_D4.2_PUG-MODIS_v1.0.pdf (2020).
  21. Andela, N. et al. The global fire atlas of individual fire size, duration, speed and direction. \JournalTitleEarth System Science Data 11, 529–552, 10.5194/essd-11-529-2019 (2019).
  22. NIFC. Historic Perimeters Combined 2000-2018 GeoMAC — data-nifc.opendata.arcgis.com. https://data-nifc.opendata.arcgis.com/datasets/nifc::historic-perimeters-combined-2000-2018-geomac/about (2018).
  23. National Interagency Fire Center. National Interagency Fire Center — data-nifc.opendata.arcgis.com. https://data-nifc.opendata.arcgis.com/search?q=geomac (2019).
  24. CNFDB. Canadian Wildland Fire Information System | Canadian National Fire Database (CNFDB) — cwfis.cfs.nrcan.gc.ca. https://cwfis.cfs.nrcan.gc.ca/ha/nfdb (2022).
  25. JRC-EFFIS. Welcome to EFFIS. https://effis.jrc.ec.europa.eu/ (2008).
  26. Government of Australia. Product catalogue - Geoscience Australia — ecat.ga.gov.au. https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search##/metadata/147763 (2023).
  27. ArcGIS Australia wildfire Dashboards — arcgis.com. https://www.arcgis.com/apps/dashboards/11e177420af74b1b8c5ecd59ae3a85a4 (2020).
  28. Short, K. C. Spatial wildfire occurrence data for the united states, 1992-2015 [fpa_fod_20170508]. https://doi.org/10.2737/RDS-2013-0009.4 (2017).
  29. Sentimental wildfire: a social-physics machine learning model for wildfire nowcasting. \JournalTitleJournal of Computational Social Science 5, 1427–1465, 10.1007/s42001-022-00174-8 (2022).
  30. Denis, L. A. S. et al. All-hazards dataset mined from the US national incident management system 1999–2020. \JournalTitleScientific Data 10, 10.1038/s41597-023-01955-0 (2023).
  31. Singla, S. et al. Wildfiredb: An open-source dataset connecting wildfire occurrence with relevant determinants. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks (2021).
  32. Graff, C. A. Fire-ml: A remotely-sensed daily wildfire forecasting dataset for the contiguous united states. In ICML 2021 Workshop on Tackling Climate Change with Machine Learning (2021).
  33. Wilkinson, M. D. et al. Addendum: The FAIR guiding principles for scientific data management and stewardship. \JournalTitleScientific Data 6, 10.1038/s41597-019-0009-6 (2019).
  34. Kopp, S. et al. Achieving the full vision of earth observation data cubes. \JournalTitleData 4, 94, 10.3390/data4030094 (2019).
  35. The austrian semantic EO data cube infrastructure. \JournalTitleRemote Sensing 13, 4807, 10.3390/rs13234807 (2021).
  36. Ariza-Porras, C. et al. CDCol: A geoscience data cube that meets colombian needs. In Communications in Computer and Information Science, 87–99, 10.1007/978-3-319-66562-7_7 (Springer International Publishing, 2017).
  37. Dhu, T. et al. Digital earth australia – unlocking new value from earth observation data. \JournalTitleBig Earth Data 1, 64–74, 10.1080/20964471.2017.1402490 (2017).
  38. Lewis, A. et al. The australian geoscience data cube — foundations and lessons learned. \JournalTitleRemote Sensing of Environment 202, 276–292, 10.1016/j.rse.2017.03.015 (2017).
  39. Killough, B. Overview of the open data cube initiative. In IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, 10.1109/igarss.2018.8517694 (IEEE, 2018).
  40. Giuliani, G. et al. Building an earth observations data cube: lessons learned from the swiss data cube (SDC) on generating analysis ready data (ARD). \JournalTitleBig Earth Data 1, 100–117, 10.1080/20964471.2017.1398903 (2017).
  41. Lewis, A. et al. CEOS analysis ready data for land (CARD4l) overview. In IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, 10.1109/igarss.2018.8519255 (IEEE, 2018).
  42. Estupinan-Suarez, L. M. et al. A regional earth system data lab for understanding ecosystem dynamics: An example from tropical south america. \JournalTitleFrontiers in Earth Science 9, 10.3389/feart.2021.613395 (2021).
  43. xarray: N-D labeled arrays and datasets in Python. \JournalTitlein prep, J. Open Res. Software (2016).
  44. Mesogeos: A multi-purpose dataset for data-driven wildfire modeling in the mediterranean, 10.48550/ARXIV.2306.05144 (2023).
  45. Kondylatos, S. et al. Wildfire Danger Prediction and Understanding With Deep Learning. \JournalTitleGeophysical Research Letters 49, e2022GL099368, 10.1029/2022GL099368 (2022). Eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2022GL099368.
  46. Miles, A. et al. zarr-developers/zarr-python: v2.4.0, 10.5281/zenodo.3773450 (2020).
  47. Artés, T. et al. A global wildfire dataset for the analysis of fire regimes and fire behaviour. \JournalTitleScientific Data 6, 296, 10.1038/s41597-019-0312-2 (2019). Number: 1 Publisher: Nature Publishing Group.
  48. Global fire emissions database, version 4.1 (gfedv4). \JournalTitleORNL DAAC 10.3334/ORNLDAAC/1293 (2017).
  49. Esa fire climate change initiative (fire cci): Modis fire cci burned area pixel product, version 5.1. \JournalTitleCentre for Environmental Data Analysis (CEDA) 10.5285/58F00D8814064B79A0C49662AD3AF537 (2018).
  50. Global burned area mapping from sentinel-3 synergy and VIIRS active fires. \JournalTitleRemote Sensing of Environment 282, 113298, 10.1016/j.rse.2022.113298 (2022).
  51. Mcd64a1 modis/terra+aqua burned area monthly l3 global 500m sin grid v006, 10.5067/MODIS/MCD64A1.006 (2015).
  52. An active-fire based burned area mapping algorithm for the MODIS sensor. \JournalTitleRemote Sensing of Environment 113, 408–420, 10.1016/j.rse.2008.10.006 (2009).
  53. The collection 6 MODIS active fire detection algorithm and fire products. \JournalTitleRemote Sensing of Environment 178, 31–41, 10.1016/j.rse.2016.02.054 (2016).
  54. The collection 6 MODIS burned area mapping algorithm and product. \JournalTitleRemote Sensing of Environment 217, 72–85, 10.1016/j.rse.2018.08.005 (2018).
  55. A comparison of remotely-sensed and inventory datasets for burned area in mediterranean europe. Preprint at https://arxiv.org/abs/1906.06121, 10.48550/ARXIV.1906.06121 (2019).
  56. About validation-comparison of burned area products. \JournalTitleRemote Sensing 12, 3972, 10.3390/rs12233972 (2020).
  57. Didan, K. MOD13C1 MODIS/Terra Vegetation Indices 16-Day L3 Global 0.05Deg CMG V006, 10.5067/MODIS/MOD13C1.006 (2015). Type: dataset.
  58. Hersbach, H. et al. ERA5 hourly data on single levels from 1959 to present., 10.24381/cds.adbb2d47 (2018). Type: dataset.
  59. CMES. Fire danger indices historical data from the Copernicus Emergency Management Service, 10.24381/CDS.0E89C522 (2019). Type: dataset.
  60. Kaiser, J. W. et al. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. \JournalTitleBiogeosciences 9, 527–554, 10.5194/bg-9-527-2012 (2012).
  61. Southern oscillation index (soi) [dataset]. Ropelewski, C. F. and Jones, P. D. (1987): https://journals.ametsoc.org/view/journals/mwre/115/9/1520-0493_1987_115_2161_aeotts_2_0_co_2.xml. Accessed 25.07.2023 from: https://psl.noaa.gov/data/writ/.
  62. Bivariate enso timeseries [dataset]. Smith, J. and Sardeshmukh, P. (2000): https://rmets.onlinelibrary.wiley.com/doi/10.1002/1097-0088(20001115)20:13%3C1543::AID-JOC579%3E3.0.CO;2-A. Accessed 25.07.2023 from: https://psl.noaa.gov/data/correlation/censo.data.
  63. Arctic oscillation (ao) [dataset]. Barnston, Anthony G. and Livezey, Robert E. (1987): https://journals.ametsoc.org/view/journals/mwre/115/6/1520-0493_1987_115_1083_csapol_2_0_co_2.xml. Accessed 25.07.2023 from:https://psl.noaa.gov/data/writ/.
  64. North atlantic oscillation index (nao) [dataset]. Jones Phillip. D., Jonsson T, and Wheeler D. (1997): https://rmets.onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0088(19971115)17:13%3C1433::AID-JOC203%3E3.0.CO;2-P. Accessed 25.07.2023 from: https://psl.noaa.gov/data/writ/.
  65. East atlantic (ea) [dataset]. Barnston, Anthony G. and Livezey, Robert E. (1987): https://journals.ametsoc.org/view/journals/mwre/115/6/1520-0493_1987_115_1083_csapol_2_0_co_2.xml. Accessed 25.07.2023 from: https://psl.noaa.gov/data/writ/.
  66. East atlantic (ea) [dataset]. Wallace, John M. and Gutzler, David S. (1981): https://journals.ametsoc.org/view/journals/mwre/109/4/1520-0493_1981_109_0784_titghf_2_0_co_2.xml. Accessed 25.07.2023 from: https://psl.noaa.gov/data/writ/.
  67. Global mean land/ocean temperature index from nasa/giss [dataset]. Smith Thomas M., et al., (1996): https://journals.ametsoc.org/view/journals/clim/9/6/1520-0442_1996_00_1403_rohsst_2_0_co_2.xml. Accessed 25.07.2023 from: https://data.giss.nasa.gov/gistemp/tabledata_v3/GLB.Ts.txt.
  68. Niño 3.4 calculated from the hadisst1.1 dataset at noaa/esrl [dataset]. Rayner, N. A. et al., (2003): https://www.metoffice.gov.uk/hadobs/hadisst/HadISST_paper.pdf. Accessed 25.07.2023 from: https://psl.noaa.gov/data/writ/.
  69. West pacific (wp) [dataset]. Barnston, Anthony G. and Livezey, Robert E. (1987): https://journals.ametsoc.org/view/journals/mwre/115/6/1520-0493_1987_115_1083_csapol_2_0_co_2.xml. Accessed 25.07.2023 from:https://psl.noaa.gov/data/writ/.
  70. West pacific (wp) [dataset]. Wallace, John M. and Gutzler, David S. (1981): https://journals.ametsoc.org/view/journals/mwre/109/4/1520-0493_1981_109_0784_titghf_2_0_co_2.xml. Accessed 25.07.2023 from:https://psl.noaa.gov/data/writ/.
  71. East pacific/north pacific oscillation (ep-np) [dataset]. Bell, Gerald D. and Janowiak, John E. (1995): https://journals.ametsoc.org/view/journals/bams/76/5/1520-0477_1995_076_0681_acawtm_2_0_co_2.xml. Accessed 25.07.2023 from: https://psl.noaa.gov/data/writ/.
  72. Pacific decadal oscillation (pdo) [dataset]. Mantua, Nathan J. and Hare, Steven R. and Zhang, Yuan (1997): https://journals.ametsoc.org/view/journals/bams/78/6/1520-0477_1997_078_1069_apicow_2_0_co_2.xml. Accessed 25.07.2023 from: https://psl.noaa.gov/data/writ/.
  73. Pacific north american index (pna) [dataset]. Barnston, Anthony G. and Livezey, Robert E. (1987): https://journals.ametsoc.org/view/journals/mwre/115/6/1520-0493_1987_115_1083_csapol_2_0_co_2.xml. Accessed 25.07.2023 from: https://psl.noaa.gov/data/writ/.
  74. Copernicus Climate Change Service. Land cover classification gridded maps from 1992 to present derived from satellite observations, 10.24381/CDS.006F2C9A (2019). Type: dataset.
  75. MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V061, 10.5067/MODIS/MOD11A2.061 (2021). Type: dataset.
  76. MCD15A2H MODIS/Terra+Aqua Leaf Area Index/FPAR 8-day L4 Global 500m SIN Grid V006, 10.5067/MODIS/MCD15A2H.006 (2015). [Dataset].
  77. Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. \JournalTitleBioScience 67, 534–545, 10.1093/biosci/bix014 (2017).
  78. for International Earth Science Information Network CIESIN Columbia University, C. Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11 (NASA Socioeconomic Data and Applications Center (SEDAC), 2018).
  79. ESA Fire Climate Change Initiative (Fire_cci): MODIS Fire_cci Burned Area Grid product, version 5.1, 10.5285/3628CB2FDBA443588155E15DEE8E5352 (2019). Medium: application/xml Version Number: 3.1 Type: dataset.
  80. Jordahl, K. et al. geopandas/geopandas: v0.8.1, 10.5281/zenodo.3946761 (2020).
  81. Makie.jl: Flexible high-performance data visualization for Julia. \JournalTitleJournal of Open Source Software 6, 3349, 10.21105/joss.03349 (2021).
  82. Detecting and quantifying causal associations in large nonlinear time series datasets. \JournalTitleScience Advances 5, 10.1126/sciadv.aau4996 (2019).
  83. Runge, J. et al. Inferring causation from time series in earth system sciences. \JournalTitleNature Communications 10, 10.1038/s41467-019-10105-3 (2019).
  84. Pearl, J. Causality, 10.1017/cbo9780511803161 (2009).
  85. Causation, prediction, and search (2001).
  86. Li, S. et al. Increasing vapor pressure deficit accelerates land drying. \JournalTitleJournal of Hydrology 625, 130062, 10.1016/j.jhydrol.2023.130062 (2023).
  87. Almendra-Martín, L. et al. Influence of atmospheric patterns on soil moisture dynamics in Europe. \JournalTitleScience of The Total Environment 846, 157537, 10.1016/j.scitotenv.2022.157537 (2022).
  88. Climate.gov. Understanding climate variability: The north atlantic oscillation. https://www.climate.gov/news-features/understanding-climate/climate-variability-north-atlantic-oscillation (2009). Retrieved 08, 11, 2022.
  89. Benassi, M. et al. El niño teleconnection to the euro-mediterranean late-winter: the role of extratropical pacific modulation. \JournalTitleClimate Dynamics 58, 2009–2029, 10.1007/s00382-021-05768-y (2021).
  90. UNet++: A Nested U-Net Architecture for Medical Image Segmentation, 10.48550/arXiv.1807.10165 (2018).
  91. Efficientnet: Rethinking model scaling for convolutional neural networks. In International conference on machine learning, 6105–6114, https://doi.org/10.48550/arXiv.1905.11946 (PMLR, 2019).
Citations (3)

Summary

We haven't generated a summary for this paper yet.