Exploiting Automorphisms of Temporal Graphs for Fast Exploration and Rendezvous (2312.07140v2)
Abstract: Temporal graphs are graphs where the edge set can change in each time step, and the vertex set stays the same. Exploration of temporal graphs whose snapshot in each time step is a connected graph, called connected temporal graphs, has been widely studied. We extend the concept of graph automorphisms from static graphs to temporal graphs and show that symmetries enable faster exploration: We prove that a connected temporal graph with $n$ vertices and orbit number $r$ (i.e., $r$ is the number of automorphism orbits) can be explored in $O(r n{1+\epsilon})$ time steps, for any fixed $\epsilon>0$. For $r=O(nc)$ for constant $c<1$, this is a significant improvement over the known tight worst-case bound of $\Theta(n2)$ time steps for arbitrary connected temporal graphs. We also give two lower bounds for exploration, showing that $\Omega(n \log n)$ time steps are required for some inputs with $r=O(1)$ and that $\Omega(rn)$ time steps are required for some inputs for any $r$ with $1\le r\le n$. The techniques we develop for fast exploration are used to derive the following result for rendezvous in connected temporal graphs: Two agents are placed by an adversary at arbitrary vertices and given full information about the temporal graph, except that they do not have consistent vertex labels. The agents can meet at a common vertex after $O(n{1+\epsilon})$ time steps, for any $\epsilon>0$. For some connected temporal graphs with constant orbit number we present a complementary lower bound of $\Omega(n\log n)$ time steps. Finally, we give a randomized algorithm to construct a temporal walk $W$ that visits all vertices of a given orbit with probability at least $1-\epsilon$ for any $0<\epsilon<1$ such that $W$ spans $O((n{5/3}+rn)\log n)$ time steps. The runtime of this algorithm consists of $O(n{1/3} \log (n/\epsilon))$ linear-time scans of the snapshots that exist in this time span.
- Dmvp: foremost waypoint coverage of time-varying graphs. In International Workshop on Graph-Theoretic Concepts in Computer Science, pages 29–41. Springer, 2014. doi:10.1007/978-3-319-12340-0_3.
- Multi-robot foremost coverage of time-varying graphs. In International Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics, pages 22–38. Springer, 2014. doi:10.1007/978-3-662-46018-4_2.
- Faster exploration of some temporal graphs. In 1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.SAND.2022.5.
- Temporal flows in temporal networks. Journal of Computer and System Sciences, 103:46–60, 2019. doi:10.1016/j.jcss.2019.02.003.
- The temporal explorer who returns to the base. Journal of Computer and System Sciences, 120:179–193, 2021. doi:10.1016/j.jcss.2021.04.001.
- Temporal vertex cover with a sliding time window. Journal of Computer and System Sciences, 107:108–123, 2020. doi:10.1016/j.jcss.2019.08.002.
- S. Alpern and S. Gal. The Theory of Search Games and Rendezvous. International Series in Operations Research & Management Science. Springer US, 2006. doi:10.1007/b100809.
- Steve Alpern. The rendezvous search problem. SIAM Journal on Control and Optimization, 33(3):673–683, 1995. doi:10.1137/S0363012993249195.
- Steve Alpern. Rendezvous search: A personal perspective. Operations Research, 50(5):772–795, 2002. doi:10.1287/opre.50.5.772.363.
- The theory of search games and rendezvous, volume 55. Springer Science & Business Media, 2006. doi:10.1007/b100809.
- Steven Alpern. Hide and seek games. In Seminar, Institut für höhere Studien, Wien, volume 26, 1976.
- K. Balasubramanian. Symmetry groups of chemical graphs. International Journal of Quantum Chemistry, 21(2):411–418, 1982. doi:10.1002/qua.560210206.
- How symmetric are real-world graphs? a large-scale study. Symmetry, 10(1), 2018. doi:10.3390/sym10010029.
- Deterministic rendezvous in infinite trees. CoRR, abs/2203.05160, 2022. arXiv:2203.05160, doi:10.48550/arXiv.2203.05160.
- Hans L. Bodlaender and Tom C. van der Zanden. On exploring always-connected temporal graphs of small pathwidth. Information Processing Letters, 142:68–71, 2019. doi:10.1016/j.ipl.2018.10.016.
- John Adrian Bondy and Uppaluri Siva Ramachandra Murty. Graph theory with applications, volume 290. Macmillan London, 1976.
- Gracefully degrading gathering in dynamic rings. In Stabilization, Safety, and Security of Distributed Systems: 20th International Symposium, SSS 2018, Tokyo, Japan, November 4–7, 2018, Proceedings 20, pages 349–364. Springer, 2018. doi:10.1007/978-3-030-03232-6_23.
- Edge exploration of temporal graphs. Algorithmica, 85(3):688–716, 2023. doi:10.1007/s00453-022-01018-7.
- Time-varying graphs and dynamic networks. Int. J. Parallel Emergent Distributed Syst., 27(5):387–408, 2012. doi:10.1080/17445760.2012.668546.
- How to meet when you forget: Log-space rendezvous in arbitrary graphs. In Proceedings of the 29th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, PODC ’10, page 450–459, New York, NY, USA, 2010. Association for Computing Machinery. doi:10.1145/1835698.1835801.
- Compacting and grouping mobile agents on dynamic rings. In International Conference on Theory and Applications of Models of Computation, pages 114–133. Springer, 2019. doi:10.1007/978-3-030-14812-6_8.
- Giuseppe Antonio Di Luna. Mobile agents on dynamic graphs. Distributed Computing by Mobile Entities: Current Research in Moving and Computing, pages 549–584, 2019. doi:10.1007/978-3-030-11072-7_20.
- Gathering in dynamic rings. Theoretical Computer Science, 811:79–98, 2020. doi:10.1016/j.tcs.2018.10.018.
- How to meet asynchronously at polynomial cost. In Proceedings of the 2013 ACM symposium on Principles of distributed computing, pages 92–99, 2013. doi:10.1137/130931990.
- Deleting edges to restrict the size of an epidemic in temporal networks. Journal of Computer and System Sciences, 119:60–77, 2021. doi:10.1016/j.jcss.2021.01.007.
- On temporal graph exploration. J. Comput. Syst. Sci., 119:1–18, 2021. doi:10.1016/j.jcss.2021.01.005.
- Two moves per time step make a difference. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.141.
- Exploration of k-edge-deficient temporal graphs. Acta Informatica, 59(4):387–407, 2022. doi:10.1007/s00236-022-00421-5.
- Parameterized temporal exploration problems. In 1st Symposium on Algorithmic Foundations of Dynamic Networks, SAND 2022, March 28-30, 2022, Virtual Conference, volume 221 of LIPIcs, pages 15:1–15:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.SAND.2022.15.
- Paola Flocchini. Distributed Computing by Mobile Entities: Current Research in Moving and Computing. Springer, 2019. doi:10.1007/978-3-030-11072-7.
- As time goes by: Reflections on treewidth for temporal graphs. In Treewidth, Kernels, and Algorithms: Essays Dedicated to Hans L. Bodlaender on the Occasion of His 60th Birthday, pages 49–77. Springer International Publishing, 2020. doi:10.1007/978-3-030-42071-0_6.
- Temporal graph classes: A view through temporal separators. Theoretical Computer Science, 806:197–218, 2020. doi:10.1016/j.tcs.2019.03.031.
- Algebraic Graph Theory. Number Book 207 in Graduate Texts in Mathematics. Springer, 2001. doi:10.1007/978-1-4613-0163-9.
- The complexity of temporal vertex cover in small-degree graphs. Proceedings of the AAAI Conference on Artificial Intelligence, 36(9):10193–10201, Jun. 2022. doi:10.1609/aaai.v36i9.21259.
- Exploration of constantly connected dynamic graphs based on cactuses. In International Colloquium on Structural Information and Communication Complexity, pages 250–262. Springer, 2014. doi:10.1007/978-3-319-09620-9_20.
- Exploration of the t-interval-connected dynamic graphs: the case of the ring. In International Colloquium on Structural Information and Communication Complexity, pages 13–23. Springer, 2013. doi:10.1007/978-3-319-03578-9_2.
- Algebraic graph theory: morphisms, monoids and matrices, volume 41. Walter de Gruyter GmbH & Co KG, 2019. doi:10.1515/9783110617368.
- The mobile agent rendezvous problem in the ring. Springer Nature, 2022. doi:10.1007/978-3-031-01999-9.
- Mobile agent rendezvous: A survey. In Structural Information and Communication Complexity, pages 1–9. Springer Berlin Heidelberg, 2006. doi:10.1007/11780823_1.
- Topics in Graph Automorphisms and Reconstruction. Cambridge University Press, 2016. doi:10.1017/CBO9781316669846.
- Asynchronous deterministic rendezvous in graphs. Theoretical Computer Science, 355(3):315–326, 2006. doi:10.1016/j.tcs.2005.12.016.
- Königsberg sightseeing: Eulerian walks in temporal graphs. In Combinatorial Algorithms, pages 485–500. Springer International Publishing, 2021. doi:10.1007/978-3-030-79987-8_34.
- Coloring temporal graphs. Journal of Computer and System Sciences, 123:171–185, 2022. doi:10.1016/j.jcss.2021.08.004.
- Computing Maximum Matchings in Temporal Graphs. In 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020), volume 154 of Leibniz International Proceedings in Informatics (LIPIcs), pages 27:1–27:14, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.STACS.2020.27.
- Sliding window temporal graph coloring. Journal of Computer and System Sciences, 120:97–115, 2021. doi:10.1016/j.jcss.2021.03.005.
- Othon Michail. An introduction to temporal graphs: An algorithmic perspective. Internet Math., 12(4):239–280, 2016. doi:10.1080/15427951.2016.1177801.
- Traveling salesman problems in temporal graphs. Computer Science (MFCS), 2014. doi:10.1016/j.tcs.2016.04.006.
- Traveling salesman problems in temporal graphs. Theoretical Computer Science, 634:1–23, 2016. doi:10.1016/j.tcs.2016.04.006.
- Beyond rings: Gathering in 1-interval connected graphs. Parallel Processing Letters, 31(04):2150020, 2021. doi:10.1142/S0129626421500201.
- A Timecop’s Work Is Harder Than You Think. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020), volume 170 of Leibniz International Proceedings in Informatics (LIPIcs), pages 71:1–71:14, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.MFCS.2020.71.
- Brief announcement: feasibility of weak gathering in connected-over-time dynamic rings. In Stabilization, Safety, and Security of Distributed Systems: 20th International Symposium, SSS 2018, Tokyo, Japan, November 4–7, 2018, Proceedings 20, pages 393–397. Springer, 2018. doi:10.1007/978-3-030-03232-6_27.
- Andrzej Pelc. Deterministic rendezvous in networks: A comprehensive survey. Networks, 59(3):331–347, 2012. doi:10.1002/net.21453.
- Andrzej Pelc. Deterministic rendezvous algorithms. In Distributed Computing by Mobile Entities: Current Research in Moving and Computing, pages 423–454. Springer, 2019. doi:10.1007/978-3-030-11072-7_17.
- Andrzej Pelc. Deterministic rendezvous algorithms. CoRR, abs/2303.10391, 2023. arXiv:2303.10391, doi:10.48550/arXiv.2303.10391.
- A temporal graph model to predict chemical transformations in complex dissolved organic matter. Environmental Science & Technology, 2023. doi:10.1021/acs.est.3c00351.
- Nicola Santoro. Time to change: On distributed computing in dynamic networks (keynote). In 19th International Conference on Principles of Distributed Systems, OPODIS 2015, December 14-17, 2015, Rennes, France, volume 46 of LIPIcs, pages 3:1–3:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.OPODIS.2015.3.
- C. Shannon. Presentation of a maze solving machine. In Trans. 8th Conf. Cybernetics: Circular, Causal and Feedback Mechanisms in Biological and Social Systems (New York, 1951), pages 169–181, 1951.
- Partial gathering of mobile agents in dynamic tori. In 2nd Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2023). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.SAND.2023.2.
- Partial gathering of mobile agents in dynamic rings. In Stabilization, Safety, and Security of Distributed Systems: 23rd International Symposium, SSS 2021, Virtual Event, November 17–20, 2021, Proceedings 23, pages 440–455. Springer, 2021. doi:10.1007/978-3-030-91081-5_29.
- Shadi Taghian Alamouti. Exploring temporal cycles and grids. PhD thesis, Concordia University, 2020.
- The complexity of finding small separators in temporal graphs. Journal of Computer and System Sciences, 107:72–92, 2020. doi:10.1016/j.jcss.2019.07.006.