Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum topological data analysis via the estimation of the density of states (2312.07115v1)

Published 12 Dec 2023 in quant-ph

Abstract: We develop a quantum topological data analysis (QTDA) protocol based on the estimation of the density of states (DOS) of the combinatorial Laplacian. Computing topological features of graphs and simplicial complexes is crucial for analyzing datasets and building explainable AI solutions. This task becomes computationally hard for simplicial complexes with over sixty vertices and high-degree topological features due to a combinatorial scaling. We propose to approach the task by embedding underlying hypergraphs as effective quantum Hamiltonians and evaluating their density of states from the time evolution. Specifically, we compose propagators as quantum circuits using the Cartan decomposition of effective Hamiltonians and sample overlaps of time-evolved states using multi-fidelity protocols. Next, we develop various post-processing routines and implement a Fourier-like transform to recover the rank (and kernel) of Hamiltonians. This enables us to estimate the Betti numbers, revealing the topological features of simplicial complexes. We test our protocol on noiseless and noisy quantum simulators and run examples on IBM quantum processors. We observe the resilience of the proposed QTDA approach to real-hardware noise even in the absence of error mitigation, showing the promise to near-term device implementations and highlighting the utility of global DOS-based estimators.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (69)
  1. Petroc Taylor. Volume of data/information created, captured, copied, and consumed worldwide from 2010 to 2020, with forecasts from 2021 to 2025, 2023. URL https://www.statista.com/statistics/871513/worldwide-data-created/.
  2. Topological persistence and simplification. Discrete & Computational Geometry, 28(4):511–533, nov 2002. doi: 10.1007/s00454-002-2885-2.
  3. Computing persistent homology. Discrete & Computational Geometry, 33(2):249–274, nov 2004. doi: 10.1007/s00454-004-1146-y.
  4. Persistence barcodes for shapes. International Journal of Shape Modeling, 11(02):149–187, dec 2005. doi: 10.1142/s0218654305000761.
  5. Gunnar Carlsson. Topology and data. Bulletin of the American Mathematical Society, 46(2):255–308, jan 2009. doi: 10.1090/s0273-0979-09-01249-x.
  6. Larry Wasserman. Topological data analysis. Annual Review of Statistics and Its Application, 5(1):501–532, March 2018. ISSN 2326-831X. doi: 10.1146/annurev-statistics-031017-100045.
  7. An introduction to topological data analysis: Fundamental and practical aspects for data scientists. Frontiers in Artificial Intelligence, 4, sep 2021. doi: 10.3389/frai.2021.667963.
  8. Analysis of kolmogorov flow and rayleigh–bénard convection using persistent homology. Physica D: Nonlinear Phenomena, 334:82–98, nov 2016. doi: 10.1016/j.physd.2016.02.003.
  9. Chatter detection in turning using persistent homology. Mechanical Systems and Signal Processing, 70-71:527–541, mar 2016. doi: 10.1016/j.ymssp.2015.09.046.
  10. Quantifying similarity of pore-geometry in nanoporous materials. Nature Communications, 8(1), may 2017. doi: 10.1038/ncomms15396.
  11. The topology of the cosmic web in terms of persistent betti numbers. Monthly Notices of the Royal Astronomical Society, 465(4):4281–4310, nov 2016. doi: 10.1093/mnras/stw2862.
  12. Towards a new approach to reveal dynamical organization of the brain using topological data analysis. Nature Communications, 9(1), apr 2018. doi: 10.1038/s41467-018-03664-4.
  13. Fast and accurate tumor segmentation of histology images using persistent homology and deep convolutional features. Medical Image Analysis, 55:1–14, jul 2019. doi: 10.1016/j.media.2019.03.014.
  14. A survey of topological machine learning methods. Frontiers in Artificial Intelligence, 4, may 2021. doi: 10.3389/frai.2021.681108.
  15. Using persistent homology and dynamical distances to analyze protein binding. Statistical Applications in Genetics and Molecular Biology, 15(1), jan 2016. doi: 10.1515/sagmb-2015-0057.
  16. Quantum advantage with shallow circuits. Science, 362(6412):308–311, oct 2018. doi: 10.1126/science.aar3106.
  17. Quantum supremacy using a programmable superconducting processor. Nature, 574(7779):505–510, oct 2019. doi: 10.1038/s41586-019-1666-5.
  18. Quantum algorithms for topological and geometric analysis of data. Nature Communications, 7(1), jan 2016. doi: 10.1038/ncomms10138.
  19. Lov K. Grover. A fast quantum mechanical algorithm for database search. arXiv, 1996. doi: 10.48550/arXiv.quant-ph/9605043.
  20. A. Yu. Kitaev. Quantum measurements and the abelian stabilizer problem. arXiv, 1995. doi: 10.48550/arXiv.quant-ph/9511026.
  21. A Yu Kitaev. Quantum computations: algorithms and error correction. Russian Mathematical Surveys, 52(6):1191–1249, dec 1997. doi: 10.1070/rm1997v052n06abeh002155.
  22. Review of a quantum algorithm for betti numbers. arXiv, 2019. doi: 10.48550/arXiv.1906.07673.
  23. Quantifying quantum advantage in topological data analysis. arXiv preprint, 2023. doi: 10.48550/arXiv.2209.13581.
  24. Towards quantum advantage via topological data analysis. Quantum, 6:855, nov 2022. doi: 10.22331/q-2022-11-10-855.
  25. Complexity of supersymmetric systems and the cohomology problem. arXiv, 2021. doi: 10.48550/arXiv.2107.00011.
  26. Promise clique homology on weighted graphs is QMA1subscriptQMA1\text{QMA}_{1}QMA start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT-hard and contained in QMA. arXiv, 2023. doi: 10.48550/arXiv.2311.17234.
  27. Ewin Tang. A quantum-inspired classical algorithm for recommendation systems. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC ’19. ACM, June 2019. doi: 10.1145/3313276.3316310.
  28. Quantum-inspired low-rank stochastic regression with logarithmic dependence on the dimension. arXiv, 2018. doi: 10.48550/arXiv.1811.04909.
  29. Sampling-based sublinear low-rank matrix arithmetic framework for dequantizing quantum machine learning. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC ’20. ACM, June 2020. doi: 10.1145/3357713.3384314.
  30. Quantum topological data analysis with linear depth and exponential speedup. arXiv preprint, 2021. doi: 10.48550/arXiv.2108.02811.
  31. Towards quantum advantage on noisy quantum computers. arXiv preprint, 2022. doi: 10.48550/arXiv.2209.09371.
  32. A streamlined quantum algorithm for topological data analysis with exponentially fewer qubits. arXiv preprint, 2022. doi: 10.48550/arXiv.2209.12887.
  33. Ryu Hayakawa. Quantum algorithm for persistent betti numbers and topological data analysis. Quantum, 6:873, December 2022. ISSN 2521-327X. doi: 10.22331/q-2022-12-07-873.
  34. Complexity-theoretic limitations on quantum algorithms for topological data analysis. arXiv, 2022. doi: 10.48550/arXiv.2209.14286.
  35. Cartan decomposition of SU(2n) and control of spin systems. Chemical Physics, 267(1-3):11–23, jun 2001. doi: 10.1016/s0301-0104(01)00318-4.
  36. H. F. Trotter. On the product of semi-groups of operators. Proceedings of the American Mathematical Society, 10(4):545–551, 1959. doi: 10.1090/s0002-9939-1959-0108732-6.
  37. Finding exponential product formulas of higher orders. In Quantum Annealing and Other Optimization Methods, pages 37–68. Springer Berlin Heidelberg, nov 2005. doi: 10.1007/11526216–_˝2.
  38. Optimal hamiltonian simulation by quantum signal processing. Phys. Rev. Lett., 118:010501, Jan 2017. doi: 10.1103/PhysRevLett.118.010501. URL https://link.aps.org/doi/10.1103/PhysRevLett.118.010501.
  39. Oleksandr Kyriienko. Quantum inverse iteration algorithm for programmable quantum simulators. npj Quantum Information, 6(1), jan 2020. doi: 10.1038/s41534-019-0239-7.
  40. Quantum krylov subspace algorithms for ground- and excited-state energy estimation. Physical Review A, 105(2), feb 2022. doi: 10.1103/physreva.105.022417.
  41. Density of states of many-body quantum systems from tensor networks. Physical Review B, 96(9), sep 2017. doi: 10.1103/physrevb.96.094303.
  42. Practical quantum error mitigation for near-future applications. Phys. Rev. X, 8:031027, Jul 2018. doi: 10.1103/PhysRevX.8.031027. URL https://link.aps.org/doi/10.1103/PhysRevX.8.031027.
  43. Evidence for the utility of quantum computing before fault tolerance. Nature, 618(7965):500–505, Jun 2023. ISSN 1476-4687. doi: 10.1038/s41586-023-06096-3. URL https://doi.org/10.1038/s41586-023-06096-3.
  44. Tobias J. Osborne. A renormalisation-group algorithm for eigenvalue density functions of interacting quantum systems. arXiv, 2006. doi: 10.48550/arXiv.cond-mat/0605194.
  45. Gary D. Knott. Interpolating Cubic Splines. Birkhäuser Boston, 2000. ISBN 9781461213208. doi: 10.1007/978-1-4612-1320-8.
  46. Interpolations.jl contributors. Interpolations.jl, 2023. URL https://github.com/JuliaMath/Interpolations.jl.
  47. Fixed depth hamiltonian simulation via cartan decomposition. Physical Review Letters, 129(7), aug 2022. doi: 10.1103/physrevlett.129.070501.
  48. Henrique N. Sá Earp and Jiannis K. Pachos. A constructive algorithm for the cartan decomposition of su(2n). Journal of Mathematical Physics, 46(8), August 2005. ISSN 1089-7658. doi: 10.1063/1.2008210.
  49. swap test and hong-ou-mandel effect are equivalent. Physical Review A, 87(5), may 2013. doi: 10.1103/physreva.87.052330.
  50. Variational quantum state diagonalization. npj Quantum Information, 5(1), jun 2019. doi: 10.1038/s41534-019-0167-6.
  51. Entanglement spectroscopy with a depth-two quantum circuit. Journal of Physics A: Mathematical and Theoretical, 52(4):044001, jan 2019. doi: 10.1088/1751-8121/aaf54d.
  52. Learning the quantum algorithm for state overlap. New Journal of Physics, 20(11):113022, nov 2018. doi: 10.1088/1367-2630/aae94a.
  53. Methodology for replacing indirect measurements with direct measurements. Physical Review Research, 1(1), aug 2019. doi: 10.1103/physrevresearch.1.013006.
  54. Hamiltonian operator approximation for energy measurement and ground-state preparation. PRX Quantum, 2(3), aug 2021. doi: 10.1103/prxquantum.2.030318.
  55. Quantum kernel methods for solving regression problems and differential equations. Phys. Rev. A, 107:032428, Mar 2023. doi: 10.1103/PhysRevA.107.032428. URL https://link.aps.org/doi/10.1103/PhysRevA.107.032428.
  56. Qiskit contributors. Qiskit: An open-source framework for quantum computing, 2023.
  57. Accelerated variational quantum eigensolver. Physical Review Letters, 122(14), April 2019. ISSN 1079-7114. doi: 10.1103/physrevlett.122.140504.
  58. Julia: A fresh approach to numerical computing. SIAM review, 59(1):65–98, 2017. URL https://doi.org/10.1137/141000671.
  59. Thomas Steckmann Efekan Kökcü. Cartan quantum synthesizer. https://github.com/kemperlab/cartan-quantum-synthesizer, 2022. [Online; accessed 22-Oct-2023].
  60. t—ket⟩: a retargetable compiler for nisq devices. Quantum Science and Technology, 6(1):014003, November 2020. ISSN 2058-9565. doi: 10.1088/2058-9565/ab8e92.
  61. Ibm quantum resources, 2023. URL https://quantum.ibm.com/services/resources. Accessed: 01-08-2023.
  62. Error mitigation for short-depth quantum circuits. Physical Review Letters, 119(18), 2017. ISSN 1079-7114. doi: 10.1103/physrevlett.119.180509.
  63. Efficient variational quantum simulator incorporating active error minimization. Physical Review X, 7(2), 2017. ISSN 2160-3308. doi: 10.1103/physrevx.7.021050.
  64. Best practices for quantum error mitigation with digital zero-noise extrapolation. arXiv, 2023. doi: 10.48550/arXiv.2307.05203.
  65. From nisq to isq, 2023. URL https://pennylane.ai/blog/2023/06/from-nisq-to-isq/. Accessed: 01-08-2023.
  66. F.J. Harris. On the use of windows for harmonic analysis with the discrete fourier transform. Proceedings of the IEEE, 66(1):51–83, 1978. doi: 10.1109/proc.1978.10837.
  67. A. Nuttall. Some windows with very good sidelobe behavior. IEEE Transactions on Acoustics, Speech, and Signal Processing, 29(1):84–91, feb 1981. doi: 10.1109/tassp.1981.1163506.
  68. Spectrum and spectral density estimation by the discrete fourier transform (dft), including a comprehensive list of window functions and some new at-top windows, 2002. URL https://api.semanticscholar.org/CorpusID:117768823.
  69. Quantum symmetries and cartan decompositions in arbitrary dimensions. Journal of Physics A: Mathematical and Theoretical, 40(10):2439–2453, feb 2007. doi: 10.1088/1751-8113/40/10/013.
Citations (1)

Summary

We haven't generated a summary for this paper yet.