Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Resetting a fixed broken ELBO (2312.06828v1)

Published 11 Dec 2023 in stat.ML and cs.LG

Abstract: Variational autoencoders (VAEs) are one class of generative probabilistic latent-variable models designed for inference based on known data. They balance reconstruction and regularizer terms. A variational approximation produces an evidence lower bound (ELBO). Multiplying the regularizer term by beta provides a beta-VAE/ELBO, improving disentanglement of the latent space. However, any beta value different than unity violates the laws of conditional probability. To provide a similarly-parameterized VAE, we develop a Renyi (versus Shannon) entropy VAE, and a variational approximation RELBO that introduces a similar parameter. The Renyi VAE has an additional Renyi regularizer-like term with a conditional distribution that is not learned. The term is evaluated essentially analytically using a Singular Value Decomposition method.

Summary

We haven't generated a summary for this paper yet.