Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

KF-PLS: Optimizing Kernel Partial Least-Squares (K-PLS) with Kernel Flows (2312.06547v1)

Published 11 Dec 2023 in stat.ME and cs.LG

Abstract: Partial Least-Squares (PLS) Regression is a widely used tool in chemometrics for performing multivariate regression. PLS is a bi-linear method that has a limited capacity of modelling non-linear relations between the predictor variables and the response. Kernel PLS (K-PLS) has been introduced for modelling non-linear predictor-response relations. In K-PLS, the input data is mapped via a kernel function to a Reproducing Kernel Hilbert space (RKH), where the dependencies between the response and the input matrix are assumed to be linear. K-PLS is performed in the RKH space between the kernel matrix and the dependent variable. Most available studies use fixed kernel parameters. Only a few studies have been conducted on optimizing the kernel parameters for K-PLS. In this article, we propose a methodology for the kernel function optimization based on Kernel Flows (KF), a technique developed for Gaussian process regression (GPR). The results are illustrated with four case studies. The case studies represent both numerical examples and real data used in classification and regression tasks. K-PLS optimized with KF, called KF-PLS in this study, is shown to yield good results in all illustrated scenarios. The paper presents cross-validation studies and hyperparameter analysis of the KF methodology when applied to K-PLS.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. I. Helland, Partial least squares regression (Sep. 2014). doi:10.1002/9781118445112.stat03287. URL https://doi.org/10.1002/9781118445112.stat03287
  2. doi:10.1002/(sici)1099-128x(199601)10:1<31::aid-cem398>3.0.co;2-1. URL https://doi.org/10.1002/(sici)1099-128x(199601)10:1<31::aid-cem398>3.0.co;2-1
  3. doi:10.3390/rs11050506. URL https://doi.org/10.3390/rs11050506
  4. doi:10.1016/j.neuroimage.2010.07.034. URL https://doi.org/10.1016/j.neuroimage.2010.07.034
  5. doi:10.1016/j.rmal.2022.100027. URL https://doi.org/10.1016/j.rmal.2022.100027
  6. doi:10.1016/j.jhydrol.2020.124935. URL https://doi.org/10.1016/j.jhydrol.2020.124935
  7. doi:10.1002/fsn3.3071. URL https://doi.org/10.1002/fsn3.3071
  8. doi:10.1016/j.rse.2019.04.029. URL https://doi.org/10.1016/j.rse.2019.04.029
  9. doi:10.1016/j.neucom.2015.03.028. URL https://doi.org/10.1016/j.neucom.2015.03.028
  10. doi:10.1016/j.neucom.2011.08.018. URL https://doi.org/10.1016/j.neucom.2011.08.018
  11. doi:10.1016/j.patcog.2008.04.005. URL https://doi.org/10.1016/j.patcog.2008.04.005
  12. doi:10.1109/iita.2009.170. URL https://doi.org/10.1109/iita.2009.170
  13. doi:10.1016/j.chemolab.2005.03.003. URL https://doi.org/10.1016/j.chemolab.2005.03.003
  14. doi:10.1109/tpami.2010.45. URL https://doi.org/10.1109/tpami.2010.45
  15. doi:10.1016/j.dsp.2007.08.001. URL https://doi.org/10.1016/j.dsp.2007.08.001
  16. doi:10.1109/tpwrd.2011.2136441. URL https://doi.org/10.1109/tpwrd.2011.2136441
  17. doi:10.1016/j.procs.2020.03.051. URL https://doi.org/10.1016/j.procs.2020.03.051
  18. doi:10.1039/c3ay41907j. URL https://doi.org/10.1039/c3ay41907j
  19. doi:10.1016/j.jcp.2019.03.040. URL https://doi.org/10.1016/j.jcp.2019.03.040
Citations (3)

Summary

We haven't generated a summary for this paper yet.