Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence of the Chambolle-Pock Algorithm in the Absence of Monotonicity (2312.06540v3)

Published 11 Dec 2023 in math.OC and cs.LG

Abstract: The Chambolle-Pock algorithm (CPA), also known as the primal-dual hybrid gradient method, has gained popularity over the last decade due to its success in solving large-scale convex structured problems. This work extends its convergence analysis for problems with varying degrees of (non)monotonicity, quantified through a so-called oblique weak Minty condition on the associated primal-dual operator. Our results reveal novel stepsize and relaxation parameter ranges which do not only depend on the norm of the linear mapping, but also on its other singular values. In particular, in nonmonotone settings, in addition to the classical stepsize conditions, extra bounds on the stepsizes and relaxation parameters are required. On the other hand, in the strongly monotone setting, the relaxation parameter is allowed to exceed the classical upper bound of two. Moreover, we build upon the recently introduced class of semimonotone operators, providing sufficient convergence conditions for CPA when the individual operators are semimonotone. Since this class of operators encompasses traditional operator classes including (hypo)- and co(hypo)-monotone operators, this analysis recovers and extends existing results for CPA. Tightness of the proposed stepsize ranges is demonstrated through several examples.

Citations (1)

Summary

We haven't generated a summary for this paper yet.