Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An infinite class of quantum codes derived from duadic constacyclic codes (2312.06504v2)

Published 11 Dec 2023 in cs.IT and math.IT

Abstract: We present a family of quantum stabilizer codes using the structure of duadic constacyclic codes over $\mathbb{F}_4$. Within this family, quantum codes can possess varying dimensions, and their minimum distances are lower bounded by a square root bound. For each fixed dimension, this allows us to construct an infinite sequence of binary quantum codes with a growing minimum distance. Additionally, we prove that this family of quantum codes includes an infinite subclass of degenerate codes. We also introduce a technique for extending splittings of duadic constacyclic codes, providing new insights into the minimum distance and minimum odd-like weight of specific duadic constacyclic codes. Finally, we provide numerical examples of some quantum codes with short lengths within this family.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. Remarkable degenerate quantum stabilizer codes derived from duadic codes. In 2006 IEEE International Symposium on Information Theory, pages 1105–1108. IEEE, 2006.
  2. Duadic group algebra codes. In 2007 IEEE International Symposium on Information Theory, pages 2096–2100. IEEE, 2007.
  3. Asymptotically good quantum codes. Physical Review A, 63(3):032311, 2001.
  4. Some results on the structure of constacyclic codes and new linear codes over GF⁢(7)GF7{\rm GF}(7)roman_GF ( 7 ) from quasi-twisted codes. Adv. Math. Commun., 11(1):245–258, 2017.
  5. J. Bierbrauer. The theory of cyclic codes and a generalization to additive codes. Des. Codes Cryptogr., 25(2):189–206, 2002.
  6. T. Blackford. Negacyclic duadic codes. Finite Fields and Their Applications, 14(4):930–943, 2008.
  7. T. Blackford. Isodual constacyclic codes. Finite Fields and Their Applications, 24:29–44, 2013.
  8. The magma algebra system I: The user language. Journal of Symbolic Computation, 24(3-4):235–265, 1997.
  9. S. Boztas. Constacyclic codes and constacyclic DFTs. In Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No. 98CH36252), page 235. IEEE, 1998.
  10. Quantum low-density parity-check codes. PRX Quantum, 2:040101, Oct 2021.
  11. Polyadic codes. Discrete Appl. Math., 25(1-2):3–17, 1989. Combinatorics and complexity (Chicago, IL, 1987).
  12. Correcting quantum errors with entanglement. Science, 314(5798):436–439, 2006.
  13. C. Cafaro and P. van Loock. Approximate quantum error correction for generalized amplitude-damping errors. Phys. Rev. A, 89(2):022316, 2014.
  14. Quantum error correction via codes over GF⁢(4)GF4{\rm GF}(4)roman_GF ( 4 ). IEEE Transactions on Information Theory, 44(4):1369–1387, 1998.
  15. Good quantum error-correcting codes exist. Phys. Rev. A, 54:1098–1105, Aug 1996.
  16. Constructions of optimal (r, δ𝛿\deltaitalic_δ) locally repairable codes via constacyclic codes. IEEE Transactions on Communications, 67(8):5253–5263, 2019.
  17. H. Chen. Some good quantum error-correcting codes from algebraic-geometric codes. IEEE Transactions on Information Theory, 47(5):2059–2061, 2001.
  18. Asymptotically good quantum codes exceeding the Ashikhmin-Litsyn-Tsfasman bound. IEEE Transactions on Information Theory, 47(5):2055–2058, 2001.
  19. R. Dastbasteh. New quantum codes, minimum distance bounds, and equivalence of codes. PhD thesis, Simon Fraser University, 2023.
  20. R. Dastbasteh and P. Lisoněk. New quantum codes from self-dual codes over 𝔽4subscript𝔽4\mathbb{F}_{4}blackboard_F start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT. arXiv preprint arXiv:2211.00891, 2022.
  21. R. Dastbasteh and P. Lisoněk. On the equivalence of linear cyclic and constacyclic codes. Discrete Mathematics, 346(9):113489, 2023.
  22. Decoding algorithms for surface codes. https://doi.org/10.48550/arXiv.2307.14989, 2023.
  23. L. E. Dickson. History of the Theory of Numbers, volume 1. Carnegie Institution of Washington, 1919.
  24. Multi-Error-Correcting Amplitude Damping Codes. In Proceedings of the 2010 IEEE Int. Symp. Inf. Theory (ISIT), pages 2672–2676, Austin, TX, USA, Jun. 2010.
  25. Degeneracy and its impact on the decoding of sparse quantum codes. IEEE Access, 9:89093–89119, 2021.
  26. C. F. Gauss. Disquisitiones arithmeticae, volume 1. K. Gesellschaft der Wissenschaften zu Göttingen, 1870.
  27. D. Gottesman. Class of quantum error-correcting codes saturating the quantum hamming bound. Physical Review A, 54(3):1862, 1996.
  28. M. Grassl. Code Tables: Bounds on the parameters of various types of codes. http://www.codetables.de/.
  29. M. Grassl and T. Beth. Cyclic quantum error–correcting codes and quantum shift registers. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 456(2003):2689–2706, 2000.
  30. Codes for simultaneous transmission of quantum and classical information. In 2017 IEEE International Symposium on Information Theory, pages 1718–1722, 2017.
  31. K. Guenda. Quantum duadic and affine-invariant codes. International Journal of Quantum Information, 7(01):373–384, 2009.
  32. Concise Encyclopedia of Coding Theory. Chapman and Hall/CRC, 2021.
  33. W. C. Huffman and V. Pless. Fundamentals of error-correcting codes. Cambridge university press, 2010.
  34. Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inform. Theory, 60(4):2080–2086, 2014.
  35. U. Kapshikar and S. Kundu. On the hardness of the minimum distance problem of quantum codes. IEEE Transactions on Information Theory, 69(10):6293–6302, 2023.
  36. Constacyclic duadic codes over GF⁢(4)GF4{\rm GF}(4)roman_GF ( 4 ). Applicable Algebra in Engineering, Communication and Computing, 34(2):267–277, 2023.
  37. J.-L. Kim and J. Walker. Nonbinary quantum error-correcting codes from algebraic curves. Discrete Mathematics, 308(14):3115–3124, 2008.
  38. A. Krishna and D. V. Sarwate. Pseudocyclic maximum-distance-separable codes. IEEE transactions on information theory, 36(4):880–884, 1990.
  39. G. G. La Guardia. New quantum MDS codes. IEEE transactions on information theory, 57(8):5551–5554, 2011.
  40. Good and asymptotically good quantum codes derived from algebraic geometry. Quantum Information Processing, 16:1–12, 2017.
  41. Duadic codes. IEEE transactions on information theory, 30(5):709–714, 1984.
  42. S. Ling and C. Xing. Polyadic codes revisited. IEEE Trans. Inform. Theory, 50(1):200–207, 2004.
  43. P. Lisoněk and R. Dastbasteh. Constructions of quantum codes. Presented at The 3rd International Workshop on Boolean Functions and their Applications, loen, norway. https://org.uib.no/selmer/workshops/BFA2018/Slides/Lisonek.pdf, 2018.
  44. P. Lisoněk and V. Singh. Quantum codes from nearly self-orthogonal quaternary linear codes. Designs, codes and cryptography, 73(2):417–424, 2014.
  45. A family of quantum codes with performances close to the hashing bound under iterative decoding. In 2013 IEEE International Symposium on Information Theory, pages 907–911, 2013.
  46. A. Nemec and A. Klappenecker. Infinite families of quantum-classical hybrid codes. IEEE Transactions on Information Theory, 67(5):2847–2856, 2021.
  47. P. Panteleev and G. Kalachev. Degenerate Quantum LDPC Codes With Good Finite Length Performance. Quantum, 5:585, Nov. 2021.
  48. V. Pless. Q-codes. Journal of Combinatorial Theory, Series A, 43(2):258–276, 1986.
  49. V. Pless. Duadic codes and generalizations. In Eurocode’92, pages 3–15. Springer, 1993.
  50. V. Pless and J. J. Rushanan. Triadic codes. Linear Algebra Appl., 98:415–433, 1988.
  51. H. Pollatsek and M. B. Ruskai. Permutationally invariant codes for quantum error correction. Linear Algebra and its Applications, 392:255–288, 2004.
  52. M. Smid. Duadic codes (corresp.). IEEE transactions on information theory, 33(3):432–433, 1987.
  53. A. Steane. Multiple-particle interference and quantum error correction. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 452(1954):2551–2577, 1996.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com