An infinite class of quantum codes derived from duadic constacyclic codes (2312.06504v2)
Abstract: We present a family of quantum stabilizer codes using the structure of duadic constacyclic codes over $\mathbb{F}_4$. Within this family, quantum codes can possess varying dimensions, and their minimum distances are lower bounded by a square root bound. For each fixed dimension, this allows us to construct an infinite sequence of binary quantum codes with a growing minimum distance. Additionally, we prove that this family of quantum codes includes an infinite subclass of degenerate codes. We also introduce a technique for extending splittings of duadic constacyclic codes, providing new insights into the minimum distance and minimum odd-like weight of specific duadic constacyclic codes. Finally, we provide numerical examples of some quantum codes with short lengths within this family.
- Remarkable degenerate quantum stabilizer codes derived from duadic codes. In 2006 IEEE International Symposium on Information Theory, pages 1105–1108. IEEE, 2006.
- Duadic group algebra codes. In 2007 IEEE International Symposium on Information Theory, pages 2096–2100. IEEE, 2007.
- Asymptotically good quantum codes. Physical Review A, 63(3):032311, 2001.
- Some results on the structure of constacyclic codes and new linear codes over GF(7)GF7{\rm GF}(7)roman_GF ( 7 ) from quasi-twisted codes. Adv. Math. Commun., 11(1):245–258, 2017.
- J. Bierbrauer. The theory of cyclic codes and a generalization to additive codes. Des. Codes Cryptogr., 25(2):189–206, 2002.
- T. Blackford. Negacyclic duadic codes. Finite Fields and Their Applications, 14(4):930–943, 2008.
- T. Blackford. Isodual constacyclic codes. Finite Fields and Their Applications, 24:29–44, 2013.
- The magma algebra system I: The user language. Journal of Symbolic Computation, 24(3-4):235–265, 1997.
- S. Boztas. Constacyclic codes and constacyclic DFTs. In Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No. 98CH36252), page 235. IEEE, 1998.
- Quantum low-density parity-check codes. PRX Quantum, 2:040101, Oct 2021.
- Polyadic codes. Discrete Appl. Math., 25(1-2):3–17, 1989. Combinatorics and complexity (Chicago, IL, 1987).
- Correcting quantum errors with entanglement. Science, 314(5798):436–439, 2006.
- C. Cafaro and P. van Loock. Approximate quantum error correction for generalized amplitude-damping errors. Phys. Rev. A, 89(2):022316, 2014.
- Quantum error correction via codes over GF(4)GF4{\rm GF}(4)roman_GF ( 4 ). IEEE Transactions on Information Theory, 44(4):1369–1387, 1998.
- Good quantum error-correcting codes exist. Phys. Rev. A, 54:1098–1105, Aug 1996.
- Constructions of optimal (r, δ𝛿\deltaitalic_δ) locally repairable codes via constacyclic codes. IEEE Transactions on Communications, 67(8):5253–5263, 2019.
- H. Chen. Some good quantum error-correcting codes from algebraic-geometric codes. IEEE Transactions on Information Theory, 47(5):2059–2061, 2001.
- Asymptotically good quantum codes exceeding the Ashikhmin-Litsyn-Tsfasman bound. IEEE Transactions on Information Theory, 47(5):2055–2058, 2001.
- R. Dastbasteh. New quantum codes, minimum distance bounds, and equivalence of codes. PhD thesis, Simon Fraser University, 2023.
- R. Dastbasteh and P. Lisoněk. New quantum codes from self-dual codes over 𝔽4subscript𝔽4\mathbb{F}_{4}blackboard_F start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT. arXiv preprint arXiv:2211.00891, 2022.
- R. Dastbasteh and P. Lisoněk. On the equivalence of linear cyclic and constacyclic codes. Discrete Mathematics, 346(9):113489, 2023.
- Decoding algorithms for surface codes. https://doi.org/10.48550/arXiv.2307.14989, 2023.
- L. E. Dickson. History of the Theory of Numbers, volume 1. Carnegie Institution of Washington, 1919.
- Multi-Error-Correcting Amplitude Damping Codes. In Proceedings of the 2010 IEEE Int. Symp. Inf. Theory (ISIT), pages 2672–2676, Austin, TX, USA, Jun. 2010.
- Degeneracy and its impact on the decoding of sparse quantum codes. IEEE Access, 9:89093–89119, 2021.
- C. F. Gauss. Disquisitiones arithmeticae, volume 1. K. Gesellschaft der Wissenschaften zu Göttingen, 1870.
- D. Gottesman. Class of quantum error-correcting codes saturating the quantum hamming bound. Physical Review A, 54(3):1862, 1996.
- M. Grassl. Code Tables: Bounds on the parameters of various types of codes. http://www.codetables.de/.
- M. Grassl and T. Beth. Cyclic quantum error–correcting codes and quantum shift registers. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 456(2003):2689–2706, 2000.
- Codes for simultaneous transmission of quantum and classical information. In 2017 IEEE International Symposium on Information Theory, pages 1718–1722, 2017.
- K. Guenda. Quantum duadic and affine-invariant codes. International Journal of Quantum Information, 7(01):373–384, 2009.
- Concise Encyclopedia of Coding Theory. Chapman and Hall/CRC, 2021.
- W. C. Huffman and V. Pless. Fundamentals of error-correcting codes. Cambridge university press, 2010.
- Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inform. Theory, 60(4):2080–2086, 2014.
- U. Kapshikar and S. Kundu. On the hardness of the minimum distance problem of quantum codes. IEEE Transactions on Information Theory, 69(10):6293–6302, 2023.
- Constacyclic duadic codes over GF(4)GF4{\rm GF}(4)roman_GF ( 4 ). Applicable Algebra in Engineering, Communication and Computing, 34(2):267–277, 2023.
- J.-L. Kim and J. Walker. Nonbinary quantum error-correcting codes from algebraic curves. Discrete Mathematics, 308(14):3115–3124, 2008.
- A. Krishna and D. V. Sarwate. Pseudocyclic maximum-distance-separable codes. IEEE transactions on information theory, 36(4):880–884, 1990.
- G. G. La Guardia. New quantum MDS codes. IEEE transactions on information theory, 57(8):5551–5554, 2011.
- Good and asymptotically good quantum codes derived from algebraic geometry. Quantum Information Processing, 16:1–12, 2017.
- Duadic codes. IEEE transactions on information theory, 30(5):709–714, 1984.
- S. Ling and C. Xing. Polyadic codes revisited. IEEE Trans. Inform. Theory, 50(1):200–207, 2004.
- P. Lisoněk and R. Dastbasteh. Constructions of quantum codes. Presented at The 3rd International Workshop on Boolean Functions and their Applications, loen, norway. https://org.uib.no/selmer/workshops/BFA2018/Slides/Lisonek.pdf, 2018.
- P. Lisoněk and V. Singh. Quantum codes from nearly self-orthogonal quaternary linear codes. Designs, codes and cryptography, 73(2):417–424, 2014.
- A family of quantum codes with performances close to the hashing bound under iterative decoding. In 2013 IEEE International Symposium on Information Theory, pages 907–911, 2013.
- A. Nemec and A. Klappenecker. Infinite families of quantum-classical hybrid codes. IEEE Transactions on Information Theory, 67(5):2847–2856, 2021.
- P. Panteleev and G. Kalachev. Degenerate Quantum LDPC Codes With Good Finite Length Performance. Quantum, 5:585, Nov. 2021.
- V. Pless. Q-codes. Journal of Combinatorial Theory, Series A, 43(2):258–276, 1986.
- V. Pless. Duadic codes and generalizations. In Eurocode’92, pages 3–15. Springer, 1993.
- V. Pless and J. J. Rushanan. Triadic codes. Linear Algebra Appl., 98:415–433, 1988.
- H. Pollatsek and M. B. Ruskai. Permutationally invariant codes for quantum error correction. Linear Algebra and its Applications, 392:255–288, 2004.
- M. Smid. Duadic codes (corresp.). IEEE transactions on information theory, 33(3):432–433, 1987.
- A. Steane. Multiple-particle interference and quantum error correction. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 452(1954):2551–2577, 1996.