Dynamical exciton condensates in biased electron-hole bilayers (2312.06426v2)
Abstract: Bilayer materials may support interlayer excitons comprised of electrons in one layer and holes in the other. In experiments, a non-zero exciton density is typically sustained by a bias chemical potential, implemented either by optical pumping or by electrical contacts connected to the two layers. We show that if charge can tunnel between the layers, the chemical potential bias means that an exciton condensate is in the dynamical regime of ac Josephson effect. It has physical consequences such as tunneling currents and the ability to tune a condensate from bright (emitting coherent photons) to dark by experimental controlling knobs. If the system is placed in an optical cavity, coupling with cavity photons favors different dynamical states depending on the bias, realizing superradiant phases.
- S. I. Shevchenko, Sov. J. Low Temp. Phys. 3, 293 (1977).
- Y. Naveh and B. Laikhtman, Phys. Rev. Lett. 77, 900 (1996).
- J. Gu, L. Ma, S. Liu, K. Watanabe, T. Taniguchi, J. C. Hone, J. Shan, and K. F. Mak, “Dipolar excitonic insulator in a moire lattice,” (2021), arXiv:2108.06588 [cond-mat.str-el] .
- J. Eisenstein, Annual Review of Condensed Matter Physics 5, 159 (2014).
- M. Xie and A. MacDonald, Physical Review Letters 121, 067702 (2018).
- M. Wouters and I. Carusotto, Phys. Rev. Lett. 99, 140402 (2007).
- L. M. Sieberer, M. Buchhold, J. Marino, and S. Diehl, “Universality in driven open quantum matter,” (2023), arXiv:2312.03073 [cond-mat.stat-mech] .
- E. Perfetto and G. Stefanucci, Phys. Rev. Lett. 125, 106401 (2020).
- Y. Zeng, V. Crépel, and A. J. Millis, “Dynamical exciton condensates in nonequilibrium electron-hole bilayers,” (2023), arXiv:2311.04074 [cond-mat.mes-hall] .
- V. L. Berezinsky, Sov. Phys. JETP 32, 493 (1971).
- J. M. Kosterlitz and D. J. Thouless, Journal of Physics C: Solid State Physics 6, 1181 (1973).
- Z. Sun, ‘‘Floquet engineering of many-body states by the ponderomotive potential,” (2023), arXiv:2312.04892 [cond-mat.str-el] .
- Y. Wan and R. Moessner, Phys. Rev. Lett. 119, 167203 (2017).
- P. B. Littlewood and X. Zhu, Physica Scripta 1996, 56 (1996).
- I. B. Birula and K. Rzyzewski, PHYSICAL REVIEW A 19 (1979).
- P. Nataf and C. Ciuti, Nature Communications 2010 1:1 1, 1 (2010).
- F. Wilczek, Phys. Rev. Lett. 111, 250402 (2013).
- H. Watanabe and M. Oshikawa, Phys. Rev. Lett. 114, 251603 (2015).
- R. Moessner and S. L. Sondhi, Nature Physics 13, 424 (2017).
- D. M. Stamper-Kurn and M. Ueda, Rev. Mod. Phys. 85, 1191 (2013).
- F. Xuan and S. Y. Quek, Phys. Rev. Res. 2, 033256 (2020).
- L. V. Keldysh, JETPL 29, 658 (1979).
- P. Bak, Reports on Progress in Physics 45, 587 (1982).