Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Offloading and Quality Control for AI Generated Content Services in 6G Mobile Edge Computing Networks (2312.06203v2)

Published 11 Dec 2023 in cs.AI, cs.NI, and cs.PF

Abstract: AI-Generated Content (AIGC), as a novel manner of providing Metaverse services in the forthcoming Internet paradigm, can resolve the obstacles of immersion requirements. Concurrently, edge computing, as an evolutionary paradigm of computing in communication systems, effectively augments real-time interactive services. In pursuit of enhancing the accessibility of AIGC services, the deployment of AIGC models (e.g., diffusion models) to edge servers and local devices has become a prevailing trend. Nevertheless, this approach faces constraints imposed by battery life and computational resources when tasks are offloaded to local devices, limiting the capacity to deliver high-quality content to users while adhering to stringent latency requirements. So there will be a tradeoff between the utility of AIGC models and offloading decisions in the edge computing paradigm. This paper proposes a joint optimization algorithm for offloading decisions, computation time, and diffusion steps of the diffusion models in the reverse diffusion stage. Moreover, we take the average error into consideration as the metric for evaluating the quality of the generated results. Experimental results conclusively demonstrate that the proposed algorithm achieves superior joint optimization performance compared to the baselines.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. L. Floridi and M. Chiriatti, “GPT-3: Its Nature, Scope, Limits, and Consequences,” Minds and Machines, vol. 30, pp. 681–694, 2020.
  2. X. Xu, Z. Wang, G. Zhang, K. Wang, and H. Shi, “Versatile Diffusion: Text, Images and Variations All in One Diffusion Model,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 7754–7765.
  3. Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A Survey on Mobile Edge Computing: The Communication Perspective,” IEEE communications surveys & tutorials, no. 4, pp. 2322–2358, 2017.
  4. M. Xu, D. Niyato, H. Zhang, J. Kang, Z. Xiong, S. Mao, and Z. Han, “Sparks of GPTs in Edge Intelligence for Metaverse: Caching and Inference for Mobile AIGC Services,” arXiv:2304.08782, 2023.
  5. S. Xie, Z. Zhang, Z. Lin, T. Hinz, and K. Zhang, “SmartBrush: Text and Shape Guided Object Inpainting With Diffusion Model,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 22 428–22 437.
  6. C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. L. Denton, K. Ghasemipour, R. Gontijo Lopes, B. Karagol Ayan, T. Salimans et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding ,” Advances in Neural Information Processing Systems, vol. 35, pp. 36 479–36 494, 2022.
  7. M. Xu, H. Du, D. Niyato, J. Kang, Z. Xiong, S. Mao, Z. Han, A. Jamalipour, D. I. Kim, V. Leung et al., “Unleashing the Power of Edge-Cloud Generative AI in Mobile Networks: A Survey of AIGC Services,” arXiv preprint arXiv:2303.16129, 2023.
  8. R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-Resolution Image Synthesis with Latent Diffusion Models,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2022, pp. 10 684–10 695.
  9. F.-A. Croitoru, V. Hondru, R. T. Ionescu, and M. Shah, “Diffusion Models in Vision: A Survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.
  10. L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, W. Zhang, B. Cui, and M.-H. Yang, “Diffusion Models: A Comprehensive Survey of Methods and Applications,” ACM Computing Surveys, 2022.
  11. L. Zhang, A. Rao, and M. Agrawala, “Adding Conditional Control to Text-to-Image Diffusion Models,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 3836–3847.
  12. X. Li, Y. Liu, L. Lian, H. Yang, Z. Dong, D. Kang, S. Zhang, and K. Keutzer, “Q-Diffusion: Quantizing Diffusion Models,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 17 535–17 545.
  13. G. Franzese, S. Rossi, L. Yang, A. Finamore, D. Rossi, M. Filippone, and P. Michiardi, “How Much Is Enough? A Study on Diffusion Times in Score-Based Generative Models,” Entropy, no. 4, p. 633, 2023.
  14. Z. Zhang, C. Li, W. Sun, X. Liu, X. Min, and G. Zhai, “A Perceptual Quality Assessment Exploration for AIGC Images,” arXiv preprint arXiv:2303.12618, 2023.
  15. H. Chung, B. Sim, and J. C. Ye, “Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Models for Inverse Problems Through Stochastic Contraction,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 12 413–12 422.
  16. H. Du, J. Wang, D. Niyato, J. Kang, Z. Xiong, and D. I. Kim, “AI-Generated Incentive Mechanism and Full-Duplex Semantic Communications for Information Sharing,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 9, pp. 2981–2997, 2023.
  17. H. Xiao, J. Zhao, J. Feng, L. Liu, Q. Pei, and W. Shi, “Joint Optimization of Security Strength and Resource Allocation for Computation Offloading in Vehicular Edge Computing,” IEEE Transactions on Wireless Communications, 2023.
  18. Q. Liu, S. Huang, J. Opadere, and T. Han, “An Edge Network Orchestrator for Mobile Augmented Reality,” in IEEE INFOCOM 2018 - IEEE Conference on Computer Communications, 2018, pp. 756–764.
  19. Y. Sun, P. Babu, and D. P. Palomar, “Majorization-Minimization Algorithms in Signal Processing, Communications, and Machine Learning,” IEEE Transactions on Signal Processing, no. 3, pp. 794–816, 2016.
  20. J. Zhao, L. Qian, and W. Yu, “Human-Centric Resource Allocation in the Metaverse over Wireless Communications,” arXiv preprint arXiv:2304.00355, 2023.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yitong Wang (47 papers)
  2. Chang Liu (864 papers)
  3. Jun Zhao (469 papers)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com