Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference (2312.05910v5)
Abstract: The Gaussian process state-space models (GPSSMs) represent a versatile class of data-driven nonlinear dynamical system models. However, the presence of numerous latent variables in GPSSM incurs unresolved issues for existing variational inference approaches, particularly under the more realistic non-mean-field (NMF) assumption, including extensive training effort, compromised inference accuracy, and infeasibility for online applications, among others. In this paper, we tackle these challenges by incorporating the ensemble Kalman filter (EnKF), a well-established model-based filtering technique, into the NMF variational inference framework to approximate the posterior distribution of the latent states. This novel marriage between EnKF and GPSSM not only eliminates the need for extensive parameterization in learning variational distributions, but also enables an interpretable, closed-form approximation of the evidence lower bound (ELBO). Moreover, owing to the streamlined parameterization via the EnKF, the new GPSSM model can be easily accommodated in online learning applications. We demonstrate that the resulting EnKF-aided online algorithm embodies a principled objective function by ensuring data-fitting accuracy while incorporating model regularizations to mitigate overfitting. We also provide detailed analysis and fresh insights for the proposed algorithms. Comprehensive evaluation across diverse real and synthetic datasets corroborates the superior learning and inference performance of our EnKF-aided variational inference algorithms compared to existing methods.
- Z. Yan, P. Cheng, Z. Chen, Y. Li, and B. Vucetic, “Gaussian process reinforcement learning for fast opportunistic spectrum access,” IEEE Trans. Signal Process., vol. 68, pp. 2613–2628, Apr. 2020.
- K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep reinforcement learning: A brief survey,” IEEE Signal Process. Mag., vol. 34, no. 6, pp. 26–38, Nov. 2017.
- A. M. Alaa and M. van der Schaar, “Attentive state-space modeling of disease progression,” in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), Vancouver, BC, Canada, Dec. 2019, pp. 11 338–11 348.
- G. Revach, N. Shlezinger, X. Ni, A. L. Escoriza, R. J. Van Sloun, and Y. C. Eldar, “KalmanNet: Neural network aided Kalman filtering for partially known dynamics,” IEEE Trans. Signal Process., vol. 70, pp. 1532–1547, Mar. 2022.
- R. Frigola, “Bayesian time series learning with Gaussian processes,” Ph.D. dissertation, University of Cambridge, 2015.
- J. M. Wang, D. J. Fleet, and A. Hertzmann, “Gaussian process dynamical models for human motion,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 2, pp. 283–298, Dec. 2007.
- R. Turner, M. Deisenroth, and C. Rasmussen, “State-space inference and learning with Gaussian processes,” in Proc. Int. Conf. Artif. Intell. Stat. (AISTATS), Sardinia, Italy, May 2010, pp. 868–875.
- M. P. Deisenroth, D. Fox, and C. E. Rasmussen, “Gaussian processes for data-efficient learning in robotics and control,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 2, pp. 408–423, Nov. 2013.
- M. P. Deisenroth, R. D. Turner, M. F. Huber, U. D. Hanebeck, and C. E. Rasmussen, “Robust filtering and smoothing with Gaussian processes,” IEEE Trans. Autom. Control, vol. 57, no. 7, pp. 1865–1871, Dec. 2011.
- J. Ko and D. Fox, “GP-BayesFilters: Bayesian filtering using Gaussian process prediction and observation models,” Auton. Robots, vol. 27, no. 1, pp. 75–90, Jul. 2009.
- ——, “Learning GP-BayesFilters via Gaussian process latent variable models,” Auton. Robots, vol. 30, no. 1, pp. 3–23, Oct. 2011.
- Y. Zhao, C. Fritsche, G. Hendeby, F. Yin, T. Chen, and F. Gunnarsson, “Cramér–Rao bounds for filtering based on Gaussian process state-space models,” IEEE Trans. Signal Process., vol. 67, no. 23, pp. 5936–5951, Oct. 2019.
- A. Xie, F. Yin, B. Ai, S. Zhang, and S. Cui, “Learning while tracking: A practical system based on variational Gaussian process state-space model and smartphone sensory data,” in Proc. Int. Conf. Inf. Fusion (FUSION), Rustenburg, South Africa, Jul. 2020, pp. 1–7.
- R. Frigola, F. Lindsten, T. B. Schön, and C. E. Rasmussen, “Bayesian inference and learning in Gaussian process state-space models with particle MCMC,” in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), Lake Tahoe, NV, United states, Dec. 2013, pp. 3156–3164.
- A. Svensson, A. Solin, S. Särkkä, and T. Schön, “Computationally efficient Bayesian learning of Gaussian process state space models,” in Proc. Int. Conf. Artif. Intell. Stat. (AISTATS), Cadiz, Spain, May 2016, pp. 213–221.
- A. Svensson and T. B. Schön, “A flexible state–space model for learning nonlinear dynamical systems,” Automatica, vol. 80, pp. 189–199, Jun. 2017.
- K. Berntorp, “Online Bayesian inference and learning of Gaussian-process state–space models,” Automatica, vol. 129, p. 109613, Jul. 2021.
- A. Solin and S. Särkkä, “Hilbert space methods for reduced-rank Gaussian process regression,” Stat. Comput., vol. 30, no. 2, pp. 419–446, Mar. 2020.
- R. Frigola, Y. Chen, and C. E. Rasmussen, “Variational Gaussian process state-space models,” in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), Montreal, QC, Canada, Dec. 2014, pp. 3680–3688.
- A. J. McHutchon, “Nonlinear modelling and control using Gaussian processes,” Ph.D. dissertation, University of Cambridge, 2014.
- S. Eleftheriadis, T. Nicholson, M. P. Deisenroth, and J. Hensman, “Identification of Gaussian process state space models,” in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), Long Beach, CA, United states, Dec. 2017, pp. 5309–5319.
- A. Doerr, C. Daniel, M. Schiegg, N.-T. Duy, S. Schaal, M. Toussaint, and T. Sebastian, “Probabilistic recurrent state-space models,” in Proc. Int. Conf. Mach. Learn. (ICML), Stockholm, Sweden, Jul. 2018, pp. 1280–1289.
- A. D. Ialongo, M. van der Wilk, J. Hensman, and C. E. Rasmussen, “Overcoming mean-field approximations in recurrent Gaussian process models,” in Proc. Int. Conf. Mach. Learn. (ICML), Long Beach, CA, United states, Jun. 2019, pp. 2931–2940.
- S. Curi, S. Melchior, F. Berkenkamp, and A. Krause, “Structured variational inference in partially observable unstable Gaussian process state space models,” in Proc. Learning for Dynamics and Control (L4DC), Virtual, Online, Jun. 2020, pp. 147–157.
- J. Lindinger, B. Rakitsch, and C. Lippert, “Laplace approximated Gaussian process state-space models,” in Proc. Conf. Uncertain. Artif. Intell. (UAI), Eindhoven, Netherlands, Aug. 2022.
- M. Titsias, “Variational learning of inducing variables in sparse Gaussian processes,” in Proc. Int. Conf. Artif. Intell. Stat. (AISTATS), Clearwater, FL, United states, Apr. 2009, pp. 567–574.
- D. P. Kingma and M. Welling, “An introduction to variational autoencoders,” Found. Trends Mach. Learn., vol. 12, no. 4, pp. 307–392, Nov. 2019.
- R. E. Turner and M. Sahani, “Two problems with variational expectation maximisation for time-series models,” in Bayesian Time series models. Cambridge University Press, 2011, ch. 5, pp. 109–130.
- Y. Liu and P. M. Djurić, “Gaussian process state-space models with time-varying parameters and inducing points,” in Proc. European Signal Proces. Conf. (EUSIPCO), Amsterdam, Netherlands, Jan. 2021, pp. 1462–1466.
- Y. Liu, M. Ajirak, and P. M. Djurić, “Sequential estimation of Gaussian process-based deep state-space models,” IEEE Trans. Signal Process., vol. 71, pp. 2968–2980, Aug. 2023.
- Z. Lin, L. Cheng, F. Yin, L. Xu, and S. Cui, “Output-dependent Gaussian process state-space model,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), Rhodes, Greek, Jun. 2023, pp. 1–5.
- Z. Lin, F. Yin, and J. Maroñas, “Towards flexibility and interpretability of Gaussian process state-space model,” arXiv preprint arXiv:2301.08843, 2023.
- Z. Lin, J. Maroñas, Y. Li, F. Yin, and S. Theodoridis, “Towards efficient modeling and inference in multi-dimensional Gaussian process state-space models,” arXiv preprint arXiv:2309.01074, 2023.
- X. Fan, E. V. Bonilla, T. O’Kane, and S. A. Sisson, “Free-form variational inference for Gaussian process state-space models,” in Proc. Int. Conf. Mach. Learn. (ICML), Jul. 2023, pp. 9603–9622.
- T. Chen, E. Fox, and C. Guestrin, “Stochastic gradient Hamiltonian Monte Carlo,” in Proc. Int. Conf. Mach. Learn. (ICML), Beijing, China, Jun. 2014, pp. 1683–1691.
- L. Cheng, F. Yin, S. Theodoridis, S. Chatzis, and T.-H. Chang, “Rethinking Bayesian learning for data analysis: The art of prior and inference in sparsity-aware modeling,” IEEE Signal Process. Mag., vol. 39, no. 6, pp. 18–52, Nov. 2022.
- J. Courts, A. G. Wills, and T. B. Schön, “Gaussian variational state estimation for nonlinear state-space models,” IEEE Trans. Signal Process., vol. 69, pp. 5979–5993, Oct. 2021.
- R. Krishnan, U. Shalit, and D. Sontag, “Structured inference networks for nonlinear state space models,” in Proc. AAAI Conf. Artif. Intell. (AAAI), San Francisco, CA, United states, Feb. 2017, pp. 2101–2109.
- A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: an imperative style, high-performance deep learning library,” in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), Vancouver, Canada, Dec. 2019, pp. 8026–8037.
- M. Roth, G. Hendeby, C. Fritsche, and F. Gustafsson, “The ensemble Kalman filter: A signal processing perspective,” EURASIP J. Adv. Signal Process., vol. 2017, pp. 1–16, Dec. 2017.
- J. Hensman, N. Fusi, and N. D. Lawrence, “Gaussian processes for big data,” in Proc. Conf. Uncertain. Artif. Intell. (UAI), Bellevue, WA, United states, Jul. 2013, pp. 282–290.
- M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley, “Stochastic variational inference,” J. Mach. Learn. Res, vol. 14, no. 40, pp. 1303–1347, May 2013.
- D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proc. Int. Conf. Learn. Represent. (ICLR), San Diego, CA, United states, May 2015.
- J. W. Tukey, “The future of data analysis,” Ann. Math. Stat., vol. 33, no. 1, pp. 1–67, Mar. 1962.
- C. A. Naesseth, F. Lindsten, and T. B. Schön, “High-dimensional filtering using nested sequential monte carlo,” IEEE Trans. Signal Process., vol. 67, no. 16, pp. 4177–4188, Jul. 2019.
- M. Katzfuss, J. R. Stroud, and C. K. Wikle, “Understanding the ensemble Kalman filter,” Amer. Stat., vol. 70, no. 4, pp. 350–357, Oct. 2016.
- A. Campbell, Y. Shi, T. Rainforth, and A. Doucet, “Online variational filtering and parameter learning,” in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), Virtual, Online, Dec. 2021, pp. 18 633–18 645.
- C. Rosato, L. Devlin, V. Beraud, P. Horridge, T. B. Schön, and S. Maskell, “Efficient learning of the parameters of non-linear models using differentiable resampling in particle filters,” IEEE Trans. Signal Process., vol. 70, pp. 3676–3692, Jul. 2022.
- Y. Chen, D. Sanz-Alonso, and R. Willett, “Autodifferentiable ensemble Kalman filters,” SIAM J. Math. Data Sci., vol. 4, no. 2, pp. 801–833, Jun. 2022.
- ——, “Reduced-order autodifferentiable ensemble Kalman filters,” Inverse Probl., vol. 39, no. 12, p. 124001, Oct. 2023.
- T. Ishizone, T. Higuchi, and K. Nakamura, “Ensemble Kalman variational objective: A variational inference framework for sequential variational auto-encoders,” Nonlinear Theory and Its Applications, IEICE, vol. 14, no. 4, pp. 691–717, Oct. 2023.
- J. Courts, A. G. Wills, T. B. Schön, and B. Ninness, “Variational system identification for nonlinear state-space models,” Automatica, vol. 147, p. 110687, Jan. 2023.
- K. D. Polyzos, Q. Lu, and G. B. Giannakis, “Ensemble Gaussian processes for online learning over graphs with adaptivity and scalability,” IEEE Trans. Signal Process., vol. 70, pp. 17–30, Oct. 2021.
- Y. Zhao, J. Nassar, I. Jordan, M. Bugallo, and I. M. Park, “Streaming variational Monte Carlo,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 1, pp. 1150–1161, Feb. 2022.
- M. Dowling, Y. Zhao, and I. M. Park, “Real-time variational method for learning neural trajectory and its dynamics,” in Proc. Int. Conf. Learn. Represent. (ICLR), 2023.
- Y. Zhao and I. M. Park, “Variational online learning of neural dynamics,” Front. Comput. Neurosci., vol. 14, p. 71, Oct. 2020.
- S. Linderman, M. Johnson, A. Miller, R. Adams, D. Blei, and L. Paninski, “Bayesian learning and inference in recurrent switching linear dynamical systems,” in Proc. Int. Conf. Artif. Intell. Stat. (AISTATS), Fort Lauderdale, FL, United states, Apr. 2017, pp. 914–922.