Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Parameter Selection for Kernel Ridge Regression (2312.05885v1)

Published 10 Dec 2023 in cs.LG, math.ST, and stat.TH

Abstract: This paper focuses on parameter selection issues of kernel ridge regression (KRR). Due to special spectral properties of KRR, we find that delicate subdivision of the parameter interval shrinks the difference between two successive KRR estimates. Based on this observation, we develop an early-stopping type parameter selection strategy for KRR according to the so-called Lepskii-type principle. Theoretical verifications are presented in the framework of learning theory to show that KRR equipped with the proposed parameter selection strategy succeeds in achieving optimal learning rates and adapts to different norms, providing a new record of parameter selection for kernel methods.

Citations (3)

Summary

We haven't generated a summary for this paper yet.