Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decay estimates for Cayley transforms and inverses of semigroup generators via the $\mathcal{B}$-calculus (2312.05692v2)

Published 9 Dec 2023 in math.FA, cs.NA, and math.NA

Abstract: Let $-A$ be the generator of a bounded $C_0$-semigroup $(e{-tA})_{t \geq 0}$ on a Hilbert space. First we study the long-time asymptotic behavior of the Cayley transform $V_{\omega}(A) := (A-\omega I) (A+\omega I){-1}$ with $\omega >0$. We give a decay estimate for $|V_{\omega}(A)nA{-1}|$ when $(e{-tA})_{t \geq 0}$ is polynomially stable. Considering the case where the parameter $\omega$ varies, we estimate $|(\prod_{k=1}n V_{\omega_k}(A))A{-1}|$ for exponentially stable $C_0$-semigroups $(e{-tA})_{t \geq 0}$. Next we show that if the generator $-A$ of the bounded $C_0$-semigroup has a bounded inverse, then $\sup_{t \geq 0} |e{-tA{-1}} A{-\alpha} | < \infty$ for all $\alpha >0$. We also present an estimate for the rate of decay of $|e{-tA{-1}} A{-1} |$, assuming that $(e{-tA})_{t \geq 0}$ is polynomially stable. To obtain these results, we use operator norm estimates offered by a functional calculus called the $\mathcal{B}$-calculus.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. Decompositions of a Krein space in regular subspaces invariant under a uniformly bounded C0subscript𝐶0C_{0}italic_C start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT-semigroup of bi-contractions. J. Funct. Anal., 211:324–354, 2004.
  2. Polynomial stability of operator semigroups. Math. Nachr., 279:1425–1440, 2006.
  3. C. J. K. Batty and T. Duyckaerts. Non-uniform stability for bounded semi-groups on Banach spaces. J. Evol. Equations, 8:765–780, 2008.
  4. A Besov algebra calculus for generators of operator semigroups and related norm-estimates. Math. Ann., 379:23–93, 2021.
  5. The theory of Besov functional calculus: developments and applications to semigroups. J. Funct. Anal., 281, Art. no. 109089, 60 pp., 2021.
  6. P. Brenner and V. Thomée. On rational approximations of semigroups. SIAM J. Numer. Anal., 16:683–694, 1979.
  7. Semi-uniform stability of operator semigroups and energy decay of damped waves. Philos. Trans. Roy. Soc. A, 378: Art. no. 20190614 , 24 pp., 2020.
  8. R. deLaubenfels. Inverses of generators. Proc. Amer. Math. Soc., 104:443–448, 1988.
  9. R. deLaubenfels. Inverses of generators of nonanalytic semigroups. Studia Math., 191:11–38, 2009.
  10. T. Eisner. Stability of Operators and Operator Semigroups. Basel: Birkhäuser, 2010.
  11. T. Eisner and H. Zwart. The growth of a C0subscript𝐶0C_{0}italic_C start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT-semigroup characterised by its cogenerator. J. Evol. Equations, 8, 2008.
  12. K.-J. Engel and R. Nagel. One-Parameter Semigroups for Linear Evolution Equations. New York: Springer, 2000.
  13. S. Fackler. A short counterexample to the inverse generator problem on non-Hilbertian reflexive Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT-spaces. Arch. Math., 106:383–389, 2016.
  14. A. Gomilko. Cayley transform of the generator of a uniformly bounded C0subscript𝐶0C_{0}italic_C start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT-semigroup of operators. Ukrainian Math. J., 56:1212–1226, 2004.
  15. A. Gomilko. Inverses of semigroup generators: a survey and remarks. In Études opératorielles, Banach Center Publ., vol. 112, Polish Acad. Sci., Warsaw, pages 107–142, 2017.
  16. A. Gomilko and Yu. Tomilov. Rational approximation of operator semigroups via the ℬℬ\mathcal{B}caligraphic_B-calculus. J. Funct. Anal., 287, Art. no. 110426, 39 pp., 2024.
  17. Growth of semigroups in discrete and continuous time. Studia Math., 206:273–292, 2011.
  18. Inverse operator of the generator of a C0subscript𝐶0C_{0}italic_C start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT-semigroup. Sb. Math., 198:1095–1110, 2007.
  19. B.-Z. Guo and H. Zwart. On the relation between stability of continuous- and discrete-time evolution equations via the Cayley transform. Integral Equations Operator Theory, 54:349–383, 2006.
  20. M. Haase. The Functional Calculus for Sectorial Operators. Basel: Birkhäuser, 2006.
  21. H. Komatsu. Fractional powers of operators. Pacific J. Math., 19:285–346, 1966.
  22. S. Piskarev and H. Zwart. Crank-Nicolson scheme for abstract linear systems. Numer. Funct. Anal. Optim., 28:717–736, 2007.
  23. M. Wakaiki. The Cayley transform of the generator of a polynomially stable C0subscript𝐶0C_{0}italic_C start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT-semigroup. J. Evol. Equations, 21:4575–4597, 2021.
  24. M. Wakaiki. Decay rate of exp⁡(A−1⁢t)⁢A−1superscript𝐴1𝑡superscript𝐴1\exp(A^{-1}t)A^{-1}roman_exp ( italic_A start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_t ) italic_A start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT on a Hilbert space and the Crank–Nicolson scheme with smooth initial data. Integral Equations Operator Theory, 95, Art. no. 28, 24 pp., 2023.
  25. H. Zwart. Growth estimates for exp⁡(A−1⁢t)superscript𝐴1𝑡\exp(A^{-1}t)roman_exp ( italic_A start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_t ) on a Hilbert space. Semigroup Forum, 74:487–494, 2007.
  26. H. Zwart. Is A−1superscript𝐴1A^{-1}italic_A start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT an infinitesimal generator? In Perspectives in operator theory, Banach Center Publ., vol. 75, Polish Acad. Sci., Warsaw, pages 303–313, 2007.
Citations (1)

Summary

We haven't generated a summary for this paper yet.