Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Chain-of-Thought in Neural Code Generation: From and For Lightweight Language Models (2312.05562v2)

Published 9 Dec 2023 in cs.SE

Abstract: LLMs have demonstrated remarkable potential in code generation. The integration of Chain of Thought (CoT) reasoning can further boost their performance. However, current CoT methods often require manual writing or LLMs with over 100 billion parameters to generate, impeding their applicability in resource-constrained scenarios. In this study, we investigate lightweight LLMs, which are defined to have fewer than 10 billion parameters. Empirically, we find that most LLMs cannot generate high-quality CoTs when prompted by the few-shot method, but can take advantage of high-quality CoTs generated elsewhere to improve their performance in code generation. Based on these findings, we design a novel approach COTTON which can leverage LLMs to automatically generate CoTs for code generation. We synthesize new datasets and conduct extensive experiments on various benchmarks. The results show that the CoTs generated by COTTON outperform the baselines in terms of automated and human evaluation metrics. In particular, the CoTs generated by COTTON boost various LLMs to achieve higher performance gains than those generated by LLMs such as ChatGLM (130B), and are competitive with those generated by gpt-3.5-turbo (175B). Our study also showcases the potential of LLMs in software engineering applications.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (97)
  1. A. Svyatkovskiy, S. K. Deng, S. Fu, and N. Sundaresan, “Intellicode compose: Code generation using transformer,” in Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 2020, pp. 1433–1443.
  2. Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond, T. Eccles, J. Keeling, F. Gimeno, A. Dal Lago et al., “Competition-level code generation with alphacode,” Science, vol. 378, no. 6624, pp. 1092–1097, 2022.
  3. R. A. Poldrack, T. Lu, and G. Beguš, “Ai-assisted coding: Experiments with gpt-4,” arXiv preprint arXiv:2304.13187, 2023.
  4. J. Liu, C. S. Xia, Y. Wang, and L. Zhang, “Is your code generated by chatgpt really correct? rigorous evaluation of large language models for code generation,” arXiv preprint arXiv:2305.01210, 2023.
  5. J. Kaddour, J. Harris, M. Mozes, H. Bradley, R. Raileanu, and R. McHardy, “Challenges and applications of large language models,” arXiv preprint arXiv:2307.10169, 2023.
  6. A. Nazir and Z. Wang, “A comprehensive survey of chatgpt: Advancements, applications, prospects, and challenges,” Meta-Radiology, p. 100022, 2023.
  7. Y. Fu, H. Peng, L. Ou, A. Sabharwal, and T. Khot, “Specializing smaller language models towards multi-step reasoning,” arXiv preprint arXiv:2301.12726, 2023.
  8. C. Liu, X. Bao, H. Zhang, N. Zhang, H. Hu, X. Zhang, and M. Yan, “Improving chatgpt prompt for code generation,” arXiv preprint arXiv:2305.08360, 2023.
  9. N. Nashid, M. Sintaha, and A. Mesbah, “Retrieval-based prompt selection for code-related few-shot learning,” in Proceedings of the 45th International Conference on Software Engineering (ICSE’23), 2023.
  10. J. Cao, M. Li, M. Wen, and S.-c. Cheung, “A study on prompt design, advantages and limitations of chatgpt for deep learning program repair,” arXiv preprint arXiv:2304.08191, 2023.
  11. J. White, S. Hays, Q. Fu, J. Spencer-Smith, and D. C. Schmidt, “Chatgpt prompt patterns for improving code quality, refactoring, requirements elicitation, and software design,” arXiv preprint arXiv:2303.07839, 2023.
  12. J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou et al., “Chain-of-thought prompting elicits reasoning in large language models,” Advances in Neural Information Processing Systems, vol. 35, pp. 24 824–24 837, 2022.
  13. X. Jiang, Y. Dong, L. Wang, Q. Shang, and G. Li, “Self-planning code generation with large language model,” arXiv preprint arXiv:2303.06689, 2023.
  14. J. Li, G. Li, Y. Li, and Z. Jin, “Enabling programming thinking in large language models toward code generation,” arXiv preprint arXiv:2305.06599, 2023.
  15. T. Y. Zhuo, “Large language models are state-of-the-art evaluators of code generation,” arXiv preprint arXiv:2304.14317, 2023.
  16. J. Huang and K. C.-C. Chang, “Towards reasoning in large language models: A survey,” arXiv preprint arXiv:2212.10403, 2022.
  17. S. Qiao, Y. Ou, N. Zhang, X. Chen, Y. Yao, S. Deng, C. Tan, F. Huang, and H. Chen, “Reasoning with language model prompting: A survey,” arXiv preprint arXiv:2212.09597, 2022.
  18. E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese, and C. Xiong, “Codegen: An open large language model for code with multi-turn program synthesis,” in The Eleventh International Conference on Learning Representations, 2022.
  19. D. N. Manh, N. L. Hai, A. T. Dau, A. M. Nguyen, K. Nghiem, J. Guo, and N. D. Bui, “The vault: A comprehensive multilingual dataset for advancing code understanding and generation,” arXiv preprint arXiv:2305.06156, 2023.
  20. B. Zhang and R. Sennrich, “Root mean square layer normalization,” Advances in Neural Information Processing Systems, vol. 32, 2019.
  21. J. Ainslie, J. Lee-Thorp, M. de Jong, Y. Zemlyanskiy, F. Lebrón, and S. Sanghai, “Gqa: Training generalized multi-query transformer models from multi-head checkpoints,” arXiv preprint arXiv:2305.13245, 2023.
  22. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  23. E. J. Hu, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen et al., “Lora: Low-rank adaptation of large language models,” in International Conference on Learning Representations, 2021.
  24. M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large language models trained on code,” arXiv preprint arXiv:2107.03374, 2021.
  25. B. Rozière, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi, J. Liu, T. Remez, J. Rapin et al., “Code llama: Open foundation models for code,” arXiv preprint arXiv:2308.12950, 2023.
  26. H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama 2: Open foundation and fine-tuned chat models,” arXiv preprint arXiv:2307.09288, 2023.
  27. Y. Yang, X. Xia, D. Lo, and J. Grundy, “A survey on deep learning for software engineering,” ACM Computing Surveys (CSUR), vol. 54, no. 10s, pp. 1–73, 2022.
  28. J. Su, Y. Lu, S. Pan, A. Murtadha, B. Wen, and Y. Liu, “Roformer: Enhanced transformer with rotary position embedding,” arXiv preprint arXiv:2104.09864, 2021.
  29. T. Dao, D. Fu, S. Ermon, A. Rudra, and C. Ré, “Flashattention: Fast and memory-efficient exact attention with io-awareness,” Advances in Neural Information Processing Systems, vol. 35, pp. 16 344–16 359, 2022.
  30. X. Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, L. Li, X. Luo, D. Lo, J. Grundy, and H. Wang, “Large language models for software engineering: A systematic literature review,” arXiv preprint arXiv:2308.10620, 2023.
  31. S. Gunasekar, Y. Zhang, J. Aneja, C. C. T. Mendes, A. Del Giorno, S. Gopi, M. Javaheripi, P. Kauffmann, G. de Rosa, O. Saarikivi et al., “Textbooks are all you need,” arXiv preprint arXiv:2306.11644, 2023.
  32. L. Wang, C. Ma, X. Feng, Z. Zhang, H. Yang, J. Zhang, Z. Chen, J. Tang, X. Chen, Y. Lin et al., “A survey on large language model based autonomous agents,” arXiv preprint arXiv:2308.11432, 2023.
  33. N. Ding, Y. Qin, G. Yang, F. Wei, Z. Yang, Y. Su, S. Hu, Y. Chen, C.-M. Chan, W. Chen et al., “Parameter-efficient fine-tuning of large-scale pre-trained language models,” Nature Machine Intelligence, vol. 5, no. 3, pp. 220–235, 2023.
  34. B. Lester, R. Al-Rfou, and N. Constant, “The power of scale for parameter-efficient prompt tuning,” in Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, 2021, pp. 3045–3059.
  35. Y. Gu, X. Han, Z. Liu, and M. Huang, “Ppt: Pre-trained prompt tuning for few-shot learning,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2022, pp. 8410–8423.
  36. W. U. Ahmad, M. G. R. Tushar, S. Chakraborty, and K.-W. Chang, “Avatar: A parallel corpus for java-python program translation,” arXiv preprint arXiv:2108.11590, 2021.
  37. R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou, M. Marone, C. Akiki, J. Li, J. Chim et al., “Starcoder: may the source be with you!” arXiv preprint arXiv:2305.06161, 2023.
  38. Y. Wang, H. Le, A. D. Gotmare, N. D. Bui, J. Li, and S. C. Hoi, “Codet5+: Open code large language models for code understanding and generation,” arXiv preprint arXiv:2305.07922, 2023.
  39. Z. Zhang, C. Chen, B. Liu, C. Liao, Z. Gong, H. Yu, J. Li, and R. Wang, “Unifying the perspectives of nlp and software engineering: A survey on language models for code,” 2023.
  40. G. Yang, Y. Zhou, X. Chen, X. Zhang, T. Han, and T. Chen, “Exploitgen: Template-augmented exploit code generation based on codebert,” Journal of Systems and Software, vol. 197, p. 111577, 2023.
  41. G. Yang, Y. Zhou, X. Chen, X. Zhang, Y. Xu, T. Han, and T. Chen, “A syntax-guided multi-task learning approach for turducken-style code generation,” arXiv preprint arXiv:2303.05061, 2023.
  42. G. Yang, K. Liu, X. Chen, Y. Zhou, C. Yu, and H. Lin, “Ccgir: Information retrieval-based code comment generation method for smart contracts,” Knowledge-Based Systems, vol. 237, p. 107858, 2022.
  43. G. Yang, X. Chen, Y. Zhou, and C. Yu, “Dualsc: Automatic generation and summarization of shellcode via transformer and dual learning,” in 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER).   IEEE, 2022, pp. 361–372.
  44. G. Yang, Y. Zhou, X. Zhang, X. Chen, T. Han, and T. Chen, “Assessing and improving syntactic adversarial robustness of pre-trained models for code translation,” 2023.
  45. K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for automatic evaluation of machine translation,” in Proceedings of the 40th annual meeting of the Association for Computational Linguistics, 2002, pp. 311–318.
  46. S. Banerjee and A. Lavie, “Meteor: An automatic metric for mt evaluation with improved correlation with human judgments,” in Proceedings of the acl workshop on intrinsic and extrinsic evaluation measures for machine translation and/or summarization, 2005, pp. 65–72.
  47. C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,” in Text summarization branches out, 2004, pp. 74–81.
  48. I. Team, “Internlm: A multilingual language model with progressively enhanced capabilities,” https://github.com/InternLM/InternLM, 2023.
  49. Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu, D. Jiang et al., “Codebert: A pre-trained model for programming and natural languages,” in Findings of the Association for Computational Linguistics: EMNLP 2020, 2020, pp. 1536–1547.
  50. D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, L. Shujie, L. Zhou, N. Duan, A. Svyatkovskiy, S. Fu et al., “Graphcodebert: Pre-training code representations with data flow,” in International Conference on Learning Representations, 2020.
  51. S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. Clement, D. Drain, D. Jiang, D. Tang et al., “Codexglue: A machine learning benchmark dataset for code understanding and generation,” in Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 1), 2021.
  52. W. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “Unified pre-training for program understanding and generation,” in Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2021, pp. 2655–2668.
  53. Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “Codet5: Identifier-aware unified pre-trained encoder-decoder models for code understanding and generation,” in Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, 2021, pp. 8696–8708.
  54. S. Chakraborty, T. Ahmed, Y. Ding, P. T. Devanbu, and B. Ray, “Natgen: generative pre-training by “naturalizing” source code,” in Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 2022, pp. 18–30.
  55. Q. Zheng, X. Xia, X. Zou, Y. Dong, S. Wang, Y. Xue, L. Shen, Z. Wang, A. Wang, Y. Li et al., “Codegeex: A pre-trained model for code generation with multilingual benchmarking on humaneval-x,” in Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023, pp. 5673–5684.
  56. B. Wei, Y. Li, G. Li, X. Xia, and Z. Jin, “Retrieve and refine: exemplar-based neural comment generation,” in 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE).   IEEE, 2020, pp. 349–360.
  57. K. Liu, X. Chen, C. Chen, X. Xie, and Z. Cui, “Automated question title reformulation by mining modification logs from stack overflow,” IEEE Transactions on Software Engineering, 2023.
  58. L. Massarelli, F. Petroni, A. Piktus, M. Ott, T. Rocktäschel, V. Plachouras, F. Silvestri, and S. Riedel, “How decoding strategies affect the verifiability of generated text,” in Findings of the Association for Computational Linguistics: EMNLP 2020, 2020, pp. 223–235.
  59. G. Wiher, C. Meister, and R. Cotterell, “On decoding strategies for neural text generators,” Transactions of the Association for Computational Linguistics, vol. 10, pp. 997–1012, 2022.
  60. H. Face, “Text generation strategies,” 2023, https://huggingface.co/docs/transformers/generation_strategies#decoding-strategies.
  61. Y. Su, T. Lan, Y. Wang, D. Yogatama, L. Kong, and N. Collier, “A contrastive framework for neural text generation,” Advances in Neural Information Processing Systems, vol. 35, pp. 21 548–21 561, 2022.
  62. S. Mangrulkar, S. Gugger, L. Debut, Y. Belkada, S. Paul, and B. Bossan, “Peft: State-of-the-art parameter-efficient fine-tuning methods,” https://github.com/huggingface/peft, 2022.
  63. X. L. Li and P. Liang, “Prefix-tuning: Optimizing continuous prompts for generation,” in Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), 2021, pp. 4582–4597.
  64. X. Liu, Y. Zheng, Z. Du, M. Ding, Y. Qian, Z. Yang, and J. Tang, “Gpt understands, too,” AI Open, 2023.
  65. “alpaca-lora: Instruct-tune llama on consumer hardware,” https://github.com/tloen/alpaca-lora, 2023.
  66. Z. Gao, X. Xia, J. Grundy, D. Lo, and Y.-F. Li, “Generating question titles for stack overflow from mined code snippets,” ACM Transactions on Software Engineering and Methodology (TOSEM), vol. 29, no. 4, pp. 1–37, 2020.
  67. K. Liu, G. Yang, X. Chen, and C. Yu, “Sotitle: A transformer-based post title generation approach for stack overflow,” in Proceedings of The 29th IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER 2022), 2022.
  68. S. Jiang, A. Armaly, and C. McMillan, “Automatically generating commit messages from diffs using neural machine translation,” in 2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE).   IEEE, 2017, pp. 135–146.
  69. T. Cohn, P. Blunsom, and S. Goldwater, “Inducing tree-substitution grammars,” The Journal of Machine Learning Research, vol. 11, pp. 3053–3096, 2010.
  70. M. Allamanis and C. Sutton, “Mining idioms from source code,” in Proceedings of the 22nd acm sigsoft international symposium on foundations of software engineering, 2014, pp. 472–483.
  71. S. Gulwani, “Dimensions in program synthesis,” in Proceedings of the 12th international ACM SIGPLAN symposium on Principles and practice of declarative programming, 2010, pp. 13–24.
  72. D. Zan, B. Chen, F. Zhang, D. Lu, B. Wu, B. Guan, W. Yongji, and J.-G. Lou, “Large language models meet nl2code: A survey,” in Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2023, pp. 7443–7464.
  73. T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “A statistical semantic language model for source code,” in Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, 2013, pp. 532–542.
  74. V. Raychev, M. Vechev, and E. Yahav, “Code completion with statistical language models,” in Proceedings of the 35th ACM SIGPLAN conference on programming language design and implementation, 2014, pp. 419–428.
  75. I. Sutskever, G. E. Hinton, and G. W. Taylor, “The recurrent temporal restricted boltzmann machine,” Advances in neural information processing systems, vol. 21, 2008.
  76. Z. Liu, Y. Dou, J. Jiang, and J. Xu, “Automatic code generation of convolutional neural networks in fpga implementation,” in 2016 International conference on field-programmable technology (FPT).   IEEE, 2016, pp. 61–68.
  77. Z. Sun, Q. Zhu, L. Mou, Y. Xiong, G. Li, and L. Zhang, “A grammar-based structural cnn decoder for code generation,” in Proceedings of the AAAI conference on artificial intelligence, vol. 33, no. 01, 2019, pp. 7055–7062.
  78. S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing source code using a neural attention model,” in 54th Annual Meeting of the Association for Computational Linguistics 2016.   Association for Computational Linguistics, 2016, pp. 2073–2083.
  79. Y. Wan, Z. Zhao, M. Yang, G. Xu, H. Ying, J. Wu, and P. S. Yu, “Improving automatic source code summarization via deep reinforcement learning,” in Proceedings of the 33rd ACM/IEEE international conference on automated software engineering, 2018, pp. 397–407.
  80. A. Eriguchi, K. Hashimoto, and Y. Tsuruoka, “Tree-to-sequence attentional neural machine translation,” in Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2016, pp. 823–833.
  81. P. Yin and G. Neubig, “A syntactic neural model for general-purpose code generation,” in Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2017, pp. 440–450.
  82. A. Mastropaolo, S. Scalabrino, N. Cooper, D. N. Palacio, D. Poshyvanyk, R. Oliveto, and G. Bavota, “Studying the usage of text-to-text transfer transformer to support code-related tasks,” in 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).   IEEE, 2021, pp. 336–347.
  83. M. Shah, R. Shenoy, and R. Shankarmani, “Natural language to python source code using transformers,” in 2021 International Conference on Intelligent Technologies (CONIT).   IEEE, 2021, pp. 1–4.
  84. P. Liguori, E. Al-Hossami, V. Orbinato, R. Natella, S. Shaikh, D. Cotroneo, and B. Cukic, “Evil: exploiting software via natural language,” in 2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE).   IEEE, 2021, pp. 321–332.
  85. S. Chandel, C. B. Clement, G. Serrato, and N. Sundaresan, “Training and evaluating a jupyter notebook data science assistant,” arXiv preprint arXiv:2201.12901, 2022.
  86. D. Fried, A. Aghajanyan, J. Lin, S. Wang, E. Wallace, F. Shi, R. Zhong, S. Yih, L. Zettlemoyer, and M. Lewis, “Incoder: A generative model for code infilling and synthesis,” in The Eleventh International Conference on Learning Representations, 2022.
  87. E. Nijkamp, H. Hayashi, C. Xiong, S. Savarese, and Y. Zhou, “Codegen2: Lessons for training llms on programming and natural languages,” arXiv preprint arXiv:2305.02309, 2023.
  88. Z. Luo, C. Xu, P. Zhao, Q. Sun, X. Geng, W. Hu, C. Tao, J. Ma, Q. Lin, and D. Jiang, “Wizardcoder: Empowering code large language models with evol-instruct,” arXiv preprint arXiv:2306.08568, 2023.
  89. N. Muennighoff, Q. Liu, A. Zebaze, Q. Zheng, B. Hui, T. Y. Zhuo, S. Singh, X. Tang, L. von Werra, and S. Longpre, “Octopack: Instruction tuning code large language models,” arXiv preprint arXiv:2308.07124, 2023.
  90. J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama, M. Bosma, D. Zhou, D. Metzler et al., “Emergent abilities of large language models,” Transactions on Machine Learning Research, 2022.
  91. H. He, H. Zhang, and D. Roth, “Rethinking with retrieval: Faithful large language model inference,” arXiv preprint arXiv:2301.00303, 2022.
  92. X. Wang, J. Wei, D. Schuurmans, Q. V. Le, E. H. Chi, S. Narang, A. Chowdhery, and D. Zhou, “Self-consistency improves chain of thought reasoning in language models,” in The Eleventh International Conference on Learning Representations, 2022.
  93. A. Creswell, M. Shanahan, and I. Higgins, “Selection-inference: Exploiting large language models for interpretable logical reasoning,” in The Eleventh International Conference on Learning Representations, 2022.
  94. D. Zhou, N. Schärli, L. Hou, J. Wei, N. Scales, X. Wang, D. Schuurmans, C. Cui, O. Bousquet, Q. V. Le et al., “Least-to-most prompting enables complex reasoning in large language models,” in The Eleventh International Conference on Learning Representations, 2022.
  95. N. Ho, L. Schmid, and S.-Y. Yun, “Large language models are reasoning teachers,” arXiv preprint arXiv:2212.10071, 2022.
  96. L. H. Li, J. Hessel, Y. Yu, X. Ren, K.-W. Chang, and Y. Choi, “Symbolic chain-of-thought distillation: Small models can also” think” step-by-step,” arXiv preprint arXiv:2306.14050, 2023.
  97. K. Shridhar, A. Stolfo, and M. Sachan, “Distilling multi-step reasoning capabilities of large language models into smaller models via semantic decompositions,” arXiv preprint arXiv:2212.00193, 2022.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Guang Yang (422 papers)
  2. Yu Zhou (335 papers)
  3. Xiang Chen (343 papers)
  4. Xiangyu Zhang (328 papers)
  5. Terry Yue Zhuo (32 papers)
  6. Taolue Chen (50 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.