Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Smart Healthcare: Challenges and Opportunities in IoT and ML (2312.05530v2)

Published 9 Dec 2023 in cs.CY and cs.CR

Abstract: The COVID-19 pandemic and other ongoing health crises have underscored the need for prompt healthcare services worldwide. The traditional healthcare system, centered around hospitals and clinics, has proven inadequate in the face of such challenges. Intelligent wearable devices, a key part of modern healthcare, leverage Internet of Things technology to collect extensive data related to the environment as well as psychological, behavioral, and physical health. However, managing the substantial data generated by these wearables and other IoT devices in healthcare poses a significant challenge, potentially impeding decision-making processes. Recent interest has grown in applying data analytics for extracting information, gaining insights, and making predictions. Additionally, machine learning, known for addressing various big data and networking challenges, has seen increased implementation to enhance IoT systems in healthcare. This chapter focuses exclusively on exploring the hurdles encountered when integrating ML methods into the IoT healthcare sector. It offers a comprehensive summary of current research challenges and potential opportunities, categorized into three scenarios: IoT-based, ML-based, and the implementation of machine learning methodologies in the IoT-based healthcare industry. This compilation will assist future researchers, healthcare professionals, and government agencies by offering valuable insights into recent smart healthcare advancements.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (123)
  1. D. J. Cook, A. S. Crandall, B. L. Thomas, and N. C. Krishnan, “Casas: A smart home in a box,” Computer, vol. 46, no. 7, pp. 62–69, 2012.
  2. A. Alkhayyat, A. A. Thabit, F. A. Al-Mayali, Q. H. Abbasi, et al., “Wbsn in iot health-based application: toward delay and energy consumption minimization,” Journal of Sensors, vol. 2019, 2019.
  3. A. Abdullah, A. Ismael, A. Rashid, A. Abou-ElNour, and M. Tarique, “Real time wireless health monitoring application using mobile devices,” International Journal of Computer Networks & Communications (IJCNC), vol. 7, no. 3, pp. 13–30, 2015.
  4. T. Wu, J.-M. Redouté, and M. Yuce, “A wearable, low-power, real-time ecg monitor for smart t-shirt and iot healthcare applications,” in Advances in Body Area Networks I: Post-Conference Proceedings of BodyNets 2017, pp. 165–173, Springer, 2019.
  5. Y. Fu and J. Liu, “System design for wearable blood oxygen saturation and pulse measurement device,” Procedia manufacturing, vol. 3, pp. 1187–1194, 2015.
  6. M. Heshmat and A.-R. S. Shehata, “A framework about using internet of things for smart cancer treatment process,” in Proceedings of the international conference on industrial engineering and operations management, pp. 1206–1211, 2018.
  7. M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Barnaghi, and A. P. Sheth, “Machine learning for internet of things data analysis: A survey,” Digital Communications and Networks, vol. 4, no. 3, pp. 161–175, 2018.
  8. B. Qian, J. Su, Z. Wen, D. N. Jha, Y. Li, Y. Guan, D. Puthal, P. James, R. Yang, A. Y. Zomaya, et al., “Orchestrating the development lifecycle of machine learning-based iot applications: A taxonomy and survey,” ACM Computing Surveys (CSUR), vol. 53, no. 4, pp. 1–47, 2020.
  9. G. C. Babu and S. Shantharajah, “Survey on data analytics techniques in healthcare using iot platform,” International Journal of Reasoning-based Intelligent Systems, vol. 10, no. 3-4, pp. 183–196, 2018.
  10. T. M. Ghazal, M. K. Hasan, M. T. Alshurideh, H. M. Alzoubi, M. Ahmad, S. S. Akbar, B. Al Kurdi, and I. A. Akour, “Iot for smart cities: Machine learning approaches in smart healthcare—a review,” Future Internet, vol. 13, no. 8, p. 218, 2021.
  11. F. G. Mohammadi, F. Shenavarmasouleh, and H. R. Arabnia, “Applications of machine learning in healthcare and internet of things (iot): a comprehensive review,” arXiv preprint arXiv:2202.02868, 2022.
  12. N. Chawla, “Ai, iot and wearable technology for smart healthcare-a review.,” International Journal of Recent Research Aspects, vol. 7, no. 1, 2020.
  13. F. Alshehri and G. Muhammad, “A comprehensive survey of the internet of things (iot) and ai-based smart healthcare,” IEEE Access, vol. 9, pp. 3660–3678, 2020.
  14. M. A. Tunc, E. Gures, and I. Shayea, “A survey on iot smart healthcare: Emerging technologies, applications, challenges, and future trends,” arXiv preprint arXiv:2109.02042, 2021.
  15. H. Yin, A. O. Akmandor, A. Mosenia, N. K. Jha, et al., “Smart healthcare,” Foundations and Trends® in Electronic Design Automation, vol. 12, no. 4, pp. 401–466, 2018.
  16. S. Tian, W. Yang, J. M. Le Grange, P. Wang, W. Huang, and Z. Ye, “Smart healthcare: making medical care more intelligent,” Global Health Journal, vol. 3, no. 3, pp. 62–65, 2019.
  17. M.-L. Liu, L. Tao, and Z. Yan, “Internet of things-based electrocardiogram monitoring system,” Chinese Patent, vol. 102, no. 764, p. 118, 2012.
  18. L. Agustine, I. Muljono, P. R. Angka, A. Gunadhi, D. Lestariningsih, and W. A. Weliamto, “Heart rate monitoring device for arrhythmia using pulse oximeter sensor based on android,” in 2018 International Conference on Computer Engineering, Network and Intelligent Multimedia (CENIM), pp. 106–111, IEEE, 2018.
  19. J. Cecil, A. Gupta, M. Pirela-Cruz, and P. Ramanathan, “An iomt based cyber training framework for orthopedic surgery using next generation internet technologies,” Informatics in Medicine Unlocked, vol. 12, pp. 128–137, 2018.
  20. H. Su, S. E. Ovur, Z. Li, Y. Hu, J. Li, A. Knoll, G. Ferrigno, and E. De Momi, “Internet of things (iot)-based collaborative control of a redundant manipulator for teleoperated minimally invasive surgeries,” in 2020 IEEE international conference on robotics and automation (ICRA), pp. 9737–9742, IEEE, 2020.
  21. M. Yu, A. Rhuma, S. M. Naqvi, L. Wang, and J. Chambers, “A posture recognition-based fall detection system for monitoring an elderly person in a smart home environment,” IEEE transactions on information technology in biomedicine, vol. 16, no. 6, pp. 1274–1286, 2012.
  22. D. Estrin and I. Sim, “Open mhealth architecture: an engine for health care innovation,” Science, vol. 330, no. 6005, pp. 759–760, 2010.
  23. A. O. Akmandor and N. K. Jha, “Keep the stress away with soda: Stress detection and alleviation system,” IEEE Transactions on Multi-Scale Computing Systems, vol. 3, no. 4, pp. 269–282, 2017.
  24. M. A. Wahid, S. H. R. Bukhari, A. Daud, S. E. Awan, and M. A. Z. Raja, “Covict: an iot based architecture for covid-19 detection and contact tracing,” Journal of Ambient Intelligence and Humanized Computing, vol. 14, no. 6, pp. 7381–7398, 2023.
  25. H. Yin and N. K. Jha, “A health decision support system for disease diagnosis based on wearable medical sensors and machine learning ensembles,” IEEE Transactions on Multi-Scale Computing Systems, vol. 3, no. 4, pp. 228–241, 2017.
  26. S. F. Merck, “Chronic disease and mobile technology: an innovative tool for clinicians,” in Nursing Forum, vol. 52, pp. 298–305, Wiley Online Library, 2017.
  27. R. Willard-Grace, D. DeVore, E. H. Chen, D. Hessler, T. Bodenheimer, and D. H. Thom, “The effectiveness of medical assistant health coaching for low-income patients with uncontrolled diabetes, hypertension, and hyperlipidemia: protocol for a randomized controlled trial and baseline characteristics of the study population,” BMC Family practice, vol. 14, no. 1, pp. 1–10, 2013.
  28. J. Andreu-Perez, D. R. Leff, H. M. Ip, and G.-Z. Yang, “From wearable sensors to smart implants—toward pervasive and personalized healthcare,” IEEE Transactions on Biomedical Engineering, vol. 62, no. 12, pp. 2750–2762, 2015.
  29. M. Sundholm, J. Cheng, B. Zhou, A. Sethi, and P. Lukowicz, “Smart-mat: Recognizing and counting gym exercises with low-cost resistive pressure sensing matrix,” in Proceedings of the 2014 ACM international joint conference on pervasive and ubiquitous computing, pp. 373–382, 2014.
  30. N. L. Geller, D.-Y. Kim, and X. Tian, “Smart technology in lung disease clinical trials,” Chest, vol. 149, no. 1, pp. 22–26, 2016.
  31. M. K. Hassan, A. I. El Desouky, S. M. Elghamrawy, and A. M. Sarhan, “Intelligent hybrid remote patient-monitoring model with cloud-based framework for knowledge discovery,” Computers & Electrical Engineering, vol. 70, pp. 1034–1048, 2018.
  32. M. K. Hassan, A. I. El Desouky, S. M. Elghamrawy, and A. M. Sarhan, “A hybrid real-time remote monitoring framework with nb-woa algorithm for patients with chronic diseases,” Future Generation Computer Systems, vol. 93, pp. 77–95, 2019.
  33. L. Syed, S. Jabeen, S. Manimala, and A. Alsaeedi, “Smart healthcare framework for ambient assisted living using iomt and big data analytics techniques,” Future Generation Computer Systems, vol. 101, pp. 136–151, 2019.
  34. S. P. Chatrati, G. Hossain, A. Goyal, A. Bhan, S. Bhattacharya, D. Gaurav, and S. M. Tiwari, “Smart home health monitoring system for predicting type 2 diabetes and hypertension,” Journal of King Saud University-Computer and Information Sciences, vol. 34, no. 3, pp. 862–870, 2022.
  35. T. Pham, T. Tran, D. Phung, and S. Venkatesh, “Predicting healthcare trajectories from medical records: A deep learning approach,” Journal of biomedical informatics, vol. 69, pp. 218–229, 2017.
  36. V. Vijayakumar, D. Malathi, V. Subramaniyaswamy, P. Saravanan, and R. Logesh, “Fog computing-based intelligent healthcare system for the detection and prevention of mosquito-borne diseases,” Computers in Human Behavior, vol. 100, pp. 275–285, 2019.
  37. [Online; accessed November 22, 2023].
  38. Z. Dong, N. Zhang, C. Li, H. Wang, Y. Fang, J. Wang, and X. Zheng, “Anticancer drug sensitivity prediction in cell lines from baseline gene expression through recursive feature selection,” BMC cancer, vol. 15, no. 1, pp. 1–12, 2015.
  39. A. A. Kalinin, G. A. Higgins, N. Reamaroon, S. Soroushmehr, A. Allyn-Feuer, I. D. Dinov, K. Najarian, and B. D. Athey, “Deep learning in pharmacogenomics: from gene regulation to patient stratification,” Pharmacogenomics, vol. 19, no. 7, pp. 629–650, 2018.
  40. S. K. Das, S. Namasudra, A. Kumar, and N. R. Moparthi, “Aespnet: Attention enhanced stacked parallel network to improve automatic diabetic foot ulcer identification,” Image and Vision Computing, vol. 138, p. 104809, 2023.
  41. M. Bhatia and S. K. Sood, “A comprehensive health assessment framework to facilitate iot-assisted smart workouts: A predictive healthcare perspective,” Computers in Industry, vol. 92, pp. 50–66, 2017.
  42. S. Joshi, H. Kumar, J. Babu, A. Raju, and M. Nihaz, “Healthcare assistant—a tool to predict disease using machine learning,” in International Conference on Micro-Electronics and Telecommunication Engineering, pp. 221–229, Springer, 2021.
  43. B. Farahani, F. Firouzi, and K. Chakrabarty, “Healthcare iot,” Intelligent Internet of Things: From Device to Fog and Cloud, pp. 515–545, 2020.
  44. S. Tuli, N. Basumatary, S. S. Gill, M. Kahani, R. C. Arya, G. S. Wander, and R. Buyya, “Healthfog: An ensemble deep learning based smart healthcare system for automatic diagnosis of heart diseases in integrated iot and fog computing environments,” Future Generation Computer Systems, vol. 104, pp. 187–200, 2020.
  45. T. Ahmad and H. Chen, “A review on machine learning forecasting growth trends and their real-time applications in different energy systems,” Sustainable Cities and Society, vol. 54, p. 102010, 2020.
  46. S. Asthana, A. Megahed, and R. Strong, “A recommendation system for proactive health monitoring using iot and wearable technologies,” in 2017 IEEE international conference on AI & mobile services (AIMS), pp. 14–21, IEEE, 2017.
  47. V. Subramaniyaswamy, G. Manogaran, R. Logesh, V. Vijayakumar, N. Chilamkurti, D. Malathi, and N. Senthilselvan, “An ontology-driven personalized food recommendation in iot-based healthcare system,” The Journal of Supercomputing, vol. 75, pp. 3184–3216, 2019.
  48. T. Qiu, X. Liu, L. Feng, Y. Zhou, and K. Zheng, “An efficient tree-based self-organizing protocol for internet of things,” Ieee Access, vol. 4, pp. 3535–3546, 2016.
  49. M. A. Alsheikh, S. Lin, D. Niyato, and H.-P. Tan, “Rate-distortion balanced data compression for wireless sensor networks,” IEEE Sensors Journal, vol. 16, no. 12, pp. 5072–5083, 2016.
  50. Y. Pan, M. Fu, B. Cheng, X. Tao, and J. Guo, “Enhanced deep learning assisted convolutional neural network for heart disease prediction on the internet of medical things platform,” Ieee Access, vol. 8, pp. 189503–189512, 2020.
  51. K. Pradhan and P. Chawla, “Medical internet of things using machine learning algorithms for lung cancer detection,” Journal of Management Analytics, vol. 7, no. 4, pp. 591–623, 2020.
  52. R. Negra, I. Jemili, A. Zemmari, M. Mosbah, and A. Belghith, “Wban path loss based approach for human activity recognition with machine learning techniques,” in 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC), pp. 470–475, IEEE, 2018.
  53. G. Matar, J.-M. Lina, J. Carrier, A. Riley, and G. Kaddoum, “Internet of things in sleep monitoring: An application for posture recognition using supervised learning,” in 2016 IEEE 18th International conference on e-Health networking, applications and services (Healthcom), pp. 1–6, IEEE, 2016.
  54. N. Gulati and P. D. Kaur, “Friendcare-aal: A robust social iot based alert generation system for ambient assisted living,” Journal of Ambient Intelligence and Humanized Computing, pp. 1–28, 2022.
  55. I. Rupasinghe and M. Maduranga, “Towards ambient assisted living (aal): Design of an iotbased elderly activity monitoring system,” International Journal of Engineering and Manufacturing (IJEM), vol. 12, no. 2, pp. 1–10, 2022.
  56. F. Khan, A. ur Rehman, M. Usman, Z. Tan, and D. Puthal, “Performance of cognitive radio sensor networks using hybrid automatic repeat request: Stop-and-wait,” Mobile Networks and Applications, vol. 23, pp. 479–488, 2018.
  57. P. Gope and T. Hwang, “Bsn-care: A secure iot-based modern healthcare system using body sensor network,” IEEE sensors journal, vol. 16, no. 5, pp. 1368–1376, 2015.
  58. Y. ElSaadany, A. J. A. Majumder, and D. R. Ucci, “A wireless early prediction system of cardiac arrest through iot,” in 2017 IEEE 41st annual computer software and applications conference (COMPSAC), vol. 2, pp. 690–695, IEEE, 2017.
  59. T. Wood, K. Ramakrishnan, J. Hwang, G. Liu, and W. Zhang, “Toward a software-based network: integrating software defined networking and network function virtualization,” IEEE Network, vol. 29, no. 3, pp. 36–41, 2015.
  60. U. Satija, B. Ramkumar, and M. S. Manikandan, “Real-time signal quality-aware ecg telemetry system for iot-based health care monitoring,” IEEE Internet of Things Journal, vol. 4, no. 3, pp. 815–823, 2017.
  61. M. A. Jan, W. Zhang, M. Usman, Z. Tan, F. Khan, and E. Luo, “Smartedge: An end-to-end encryption framework for an edge-enabled smart city application,” Journal of Network and Computer Applications, vol. 137, pp. 1–10, 2019.
  62. P. S. Kanagasabai, R. Gautam, and G. Rathna, “Brain-computer interface learning system for quadriplegics,” in 2016 IEEE 4th international conference on MOOCs, innovation and technology in education (MITE), pp. 258–262, IEEE, 2016.
  63. A. Tissaoui and M. Saidi, “Uncertainty in iot for smart healthcare: Challenges, and opportunities,” in The Impact of Digital Technologies on Public Health in Developed and Developing Countries: 18th International Conference, ICOST 2020, Hammamet, Tunisia, June 24–26, 2020, Proceedings 18, pp. 232–239, Springer, 2020.
  64. L. P. Malasinghe, N. Ramzan, and K. Dahal, “Remote patient monitoring: a comprehensive study,” Journal of Ambient Intelligence and Humanized Computing, vol. 10, pp. 57–76, 2019.
  65. Y.-H. Hu, W.-C. Lin, C.-F. Tsai, S.-W. Ke, and C.-W. Chen, “An efficient data preprocessing approach for large scale medical data mining,” Technology and Health Care, vol. 23, no. 2, pp. 153–160, 2015.
  66. R. Bellazzi and B. Zupan, “Predictive data mining in clinical medicine: current issues and guidelines,” International journal of medical informatics, vol. 77, no. 2, pp. 81–97, 2008.
  67. P.-H. C. Chen, Y. Liu, and L. Peng, “How to develop machine learning models for healthcare,” Nature materials, vol. 18, no. 5, pp. 410–414, 2019.
  68. T. Amador, S. Saturnino, A. Veloso, and N. Ziviani, “Early identification of icu patients at risk of complications: Regularization based on robustness and stability of explanations,” Artificial Intelligence in Medicine, vol. 128, p. 102283, 2022.
  69. R. K. Naha, S. Garg, A. Chan, and S. K. Battula, “Deadline-based dynamic resource allocation and provisioning algorithms in fog-cloud environment,” Future Generation Computer Systems, vol. 104, pp. 131–141, 2020.
  70. J. Zhou, Z. Cao, X. Dong, and A. V. Vasilakos, “Security and privacy for cloud-based iot: Challenges,” IEEE Communications Magazine, vol. 55, no. 1, pp. 26–33, 2017.
  71. S. A. Ali, M. Ansari, and M. Alam, “Resource management techniques for cloud-based iot environment,” Internet of Things (IoT) Concepts and Applications, pp. 63–87, 2020.
  72. I. H. Khan, M. I. Khan, and S. Khan, “Challenges of iot implementation in smart city development,” in Smart Cities—Opportunities and Challenges: Select Proceedings of ICSC 2019, pp. 475–486, Springer, 2020.
  73. D. Sharma and R. Tripathi, “Performance of internet of things based healthcare secure services and its importance: Issue and challenges,” tech. rep., Technical report, EasyChair, 2020.
  74. M. A. Jan, F. Khan, M. Alam, and M. Usman, “A payload-based mutual authentication scheme for internet of things,” Future Generation Computer Systems, vol. 92, pp. 1028–1039, 2019.
  75. T. Flynn, G. Grispos, W. Glisson, and W. Mahoney, “Knock! knock! who is there? investigating data leakage from a medical internet of things hijacking attack,” 2020.
  76. P. A. Williams and V. McCauley, “Always connected: The security challenges of the healthcare internet of things,” in 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), pp. 30–35, IEEE, 2016.
  77. F. Khan, “Fairness and throughput improvement in multihop wireless ad hoc networks,” in 2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1–6, IEEE, 2014.
  78. Y. A. Qadri, A. Nauman, Y. B. Zikria, A. V. Vasilakos, and S. W. Kim, “The future of healthcare internet of things: a survey of emerging technologies,” IEEE Communications Surveys & Tutorials, vol. 22, no. 2, pp. 1121–1167, 2020.
  79. J. Park, G. Bhat, A. Nk, C. S. Geyik, U. Y. Ogras, and H. G. Lee, “Energy per operation optimization for energy-harvesting wearable iot devices,” Sensors, vol. 20, no. 3, p. 764, 2020.
  80. S. Abbasian Dehkordi, K. Farajzadeh, J. Rezazadeh, R. Farahbakhsh, K. Sandrasegaran, and M. Abbasian Dehkordi, “A survey on data aggregation techniques in iot sensor networks,” Wireless Networks, vol. 26, pp. 1243–1263, 2020.
  81. S. Selvaraj and S. Sundaravaradhan, “Challenges and opportunities in iot healthcare systems: a systematic review,” SN Applied Sciences, vol. 2, no. 1, p. 139, 2020.
  82. M. Mittal, S. Tanwar, B. Agarwal, and L. M. Goyal, “Energy conservation for iot devices,” Concepts, Paradigms and Solutions, Studies in Systems, Decision and Control, in Preparation, pp. 1–365, 2019.
  83. S. S. Gill and R. Buyya, “Bio-inspired algorithms for big data analytics: a survey, taxonomy, and open challenges,” in Big data analytics for intelligent healthcare management, pp. 1–17, Elsevier, 2019.
  84. R. Wan, N. Xiong, Q. Hu, H. Wang, and J. Shang, “Similarity-aware data aggregation using fuzzy c-means approach for wireless sensor networks,” EURASIP Journal on Wireless Communications and Networking, vol. 2019, pp. 1–11, 2019.
  85. G. Qi, H. Wang, M. Haner, C. Weng, S. Chen, and Z. Zhu, “Convolutional neural network based detection and judgement of environmental obstacle in vehicle operation,” CAAI Transactions on Intelligence Technology, vol. 4, no. 2, pp. 80–91, 2019.
  86. X. Li, M. Zhao, Y. Liu, L. Li, Z. Ding, and A. Nallanathan, “Secrecy analysis of ambient backscatter noma systems under i/q imbalance,” IEEE Transactions on Vehicular Technology, vol. 69, no. 10, pp. 12286–12290, 2020.
  87. T. Wiens, “Engine speed reduction for hydraulic machinery using predictive algorithms,” International Journal of Hydromechatronics, vol. 2, no. 1, pp. 16–31, 2019.
  88. X. Li, Q. Wang, Y. Liu, T. A. Tsiftsis, Z. Ding, and A. Nallanathan, “Uav-aided multi-way noma networks with residual hardware impairments,” IEEE Wireless Communications Letters, vol. 9, no. 9, pp. 1538–1542, 2020.
  89. M. Shokri and K. Tavakoli, “A review on the artificial neural network approach to analysis and prediction of seismic damage in infrastructure,” International Journal of Hydromechatronics, vol. 2, no. 4, pp. 178–196, 2019.
  90. X. Xue, J. Lu, and J. Chen, “Using nsga-iii for optimising biomedical ontology alignment,” CAAI Transactions on Intelligence Technology, vol. 4, no. 3, pp. 135–141, 2019.
  91. J. Ma, “Numerical modelling of underwater structural impact damage problems based on the material point method,” International Journal of Hydromechatronics, vol. 2, no. 4, pp. 99–110, 2019.
  92. F. Khan, A. ur Rehman, and M. A. Jan, “A secured and reliable communication scheme in cognitive hybrid arq-aided smart city,” Computers & Electrical Engineering, vol. 81, p. 106502, 2020.
  93. Y. Tingting, W. Junqian, W. Lintai, and X. Yong, “Three-stage network for age estimation,” CAAI Transactions on Intelligence Technology, vol. 4, no. 2, pp. 122–126, 2019.
  94. M. Ishtiaq, A. U. Rehman, F. Khan, A. Salam, et al., “Performance investigation of sr-harq transmission scheme in realistic cognitive radio system,” in 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), pp. 0258–0263, IEEE, 2019.
  95. F. Hussain, S. A. Hassan, R. Hussain, and E. Hossain, “Machine learning for resource management in cellular and iot networks: Potentials, current solutions, and open challenges,” IEEE communications surveys & tutorials, vol. 22, no. 2, pp. 1251–1275, 2020.
  96. D. Hassabis, D. Kumaran, C. Summerfield, and M. Botvinick, “Neuroscience-inspired artificial intelligence,” Neuron, vol. 95, no. 2, pp. 245–258, 2017.
  97. H. Kaur, M. Atif, and R. Chauhan, “An internet of healthcare things (ioht)-based healthcare monitoring system,” in Advances in Intelligent Computing and Communication: Proceedings of ICAC 2019, pp. 475–482, Springer, 2020.
  98. N. Almolhis, A. M. Alashjaee, S. Duraibi, F. Alqahtani, and A. N. Moussa, “The security issues in iot-cloud: a review,” in 2020 16th IEEE International Colloquium on Signal Processing & Its Applications (CSPA), pp. 191–196, IEEE, 2020.
  99. S. Bansal and D. Kumar, “Iot ecosystem: A survey on devices, gateways, operating systems, middleware and communication,” International Journal of Wireless Information Networks, vol. 27, pp. 340–364, 2020.
  100. A. Bhattacharjya, X. Zhong, J. Wang, and X. Li, “Present scenarios of iot projects with security aspects focused,” Digital Twin Technologies and Smart Cities, pp. 95–122, 2020.
  101. K. Yang, Y. Shi, Y. Zhou, Z. Yang, L. Fu, and W. Chen, “Federated machine learning for intelligent iot via reconfigurable intelligent surface,” IEEE network, vol. 34, no. 5, pp. 16–22, 2020.
  102. C. C.-H. Hsu, M. Y.-C. Wang, H. C. Shen, R. H.-C. Chiang, and C. H. Wen, “Fallcare+: An iot surveillance system for fall detection,” in 2017 International conference on applied system innovation (ICASI), pp. 921–922, IEEE, 2017.
  103. X. Zhang, L. Yao, S. Zhang, S. Kanhere, M. Sheng, and Y. Liu, “Internet of things meets brain–computer interface: A unified deep learning framework for enabling human-thing cognitive interactivity,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2084–2092, 2018.
  104. D. de Arruda and G. P. Hancke, “Wearable device localisation using machine learning techniques,” in 2016 IEEE 25th International symposium on industrial electronics (ISIE), pp. 1110–1115, IEEE, 2016.
  105. A. Ara and A. Ara, “Case study: Integrating iot, streaming analytics and machine learning to improve intelligent diabetes management system,” in 2017 International conference on energy, communication, data analytics and soft computing (ICECDS), pp. 3179–3182, IEEE, 2017.
  106. X. Fafoutis, L. Marchegiani, A. Elsts, J. Pope, R. Piechocki, and I. Craddock, “Extending the battery lifetime of wearable sensors with embedded machine learning,” in 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), pp. 269–274, IEEE, 2018.
  107. C. Liu, H. Zhu, D. Tang, Q. Nie, T. Zhou, L. Wang, and Y. Song, “Probing an intelligent predictive maintenance approach with deep learning and augmented reality for machine tools in iot-enabled manufacturing,” Robotics and Computer-Integrated Manufacturing, vol. 77, p. 102357, 2022.
  108. W. P. Freire, W. S. Melo Jr, V. D. do Nascimento, P. R. Nascimento, and A. O. de Sá, “Towards a secure and scalable maritime monitoring system using blockchain and low-cost iot technology,” Sensors, vol. 22, no. 13, p. 4895, 2022.
  109. A. K. Singh, R. Pamula, and G. Srivastava, “An adaptive energy aware dtn-based communication layer for cyber-physical systems,” Sustainable Computing: Informatics and Systems, vol. 35, p. 100657, 2022.
  110. S. Namasudra, P. Lorenz, and U. Ghosh, “The new era of computer network by using machine learning,” Mobile Networks and Applications, pp. 1–3, 2023.
  111. B. Diène, J. J. Rodrigues, O. Diallo, E. H. M. Ndoye, and V. V. Korotaev, “Data management techniques for internet of things,” Mechanical Systems and Signal Processing, vol. 138, p. 106564, 2020.
  112. S. Namasudra, S. Dhamodharavadhani, R. Rathipriya, R. G. Crespo, and N. R. Moparthi, “Enhanced neural network-based univariate time-series forecasting model for big data,” Big Data, 2023.
  113. N. Piovesan, A. F. Gambin, M. Miozzo, M. Rossi, and P. Dini, “Energy sustainable paradigms and methods for future mobile networks: A survey,” Computer Communications, vol. 119, pp. 101–117, 2018.
  114. K. Manjari, M. Verma, G. Singal, and S. Namasudra, “Qest: Quantized and efficient scene text detector using deep learning,” ACM Trans. Asian Low-Resour. Lang. Inf. Process., vol. 22, may 2023.
  115. M. Kim, J. Yun, Y. Cho, K. Shin, R. Jang, H.-j. Bae, and N. Kim, “Deep learning in medical imaging,” Neurospine, vol. 16, no. 4, p. 657, 2019.
  116. J. Amann, A. Blasimme, E. Vayena, D. Frey, V. I. Madai, and P. Consortium, “Explainability for artificial intelligence in healthcare: a multidisciplinary perspective,” BMC medical informatics and decision making, vol. 20, pp. 1–9, 2020.
  117. A. Vellido, “The importance of interpretability and visualization in machine learning for applications in medicine and health care,” Neural computing and applications, vol. 32, no. 24, pp. 18069–18083, 2020.
  118. H. Yu and J. Ni, “An improved ensemble learning method for classifying high-dimensional and imbalanced biomedicine data,” IEEE/ACM transactions on computational biology and bioinformatics, vol. 11, no. 4, pp. 657–666, 2014.
  119. S. Namasudra, D. Devi, S. Choudhary, R. Patan, and S. Kallam, “Security, privacy, trust, and anonymity,” Advances of DNA computing in cryptography, vol. 1, pp. 138–150, 2018.
  120. S. Das and S. Namasudra, “A novel hybrid encryption method to secure healthcare data in iot-enabled healthcare infrastructure,” Computers and Electrical Engineering, vol. 101, p. 107991, 2022.
  121. W. Li, Y. Chai, F. Khan, S. R. U. Jan, S. Verma, V. G. Menon, f. Kavita, and X. Li, “A comprehensive survey on machine learning-based big data analytics for iot-enabled smart healthcare system,” Mobile networks and applications, vol. 26, pp. 234–252, 2021.
  122. P. Shah, F. Kendall, S. Khozin, R. Goosen, J. Hu, J. Laramie, M. Ringel, and N. Schork, “Artificial intelligence and machine learning in clinical development: a translational perspective,” NPJ digital medicine, vol. 2, no. 1, p. 69, 2019.
  123. E. Moghadas, J. Rezazadeh, and R. Farahbakhsh, “An iot patient monitoring based on fog computing and data mining: Cardiac arrhythmia usecase,” Internet of Things, vol. 11, p. 100251, 2020.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Munshi Saifuzzaman (4 papers)
  2. Tajkia Nuri Ananna (4 papers)

Summary

We haven't generated a summary for this paper yet.