Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Trading Off Scalability, Privacy, and Performance in Data Synthesis (2312.05436v1)

Published 9 Dec 2023 in cs.SE

Abstract: Synthetic data has been widely applied in the real world recently. One typical example is the creation of synthetic data for privacy concerned datasets. In this scenario, synthetic data substitute the real data which contains the privacy information, and is used to public testing for machine learning models. Another typical example is the unbalance data over-sampling which the synthetic data is generated in the region of minority samples to balance the positive and negative ratio when training the machine learning models. In this study, we concentrate on the first example, and introduce (a) the Howso engine, and (b) our proposed random projection based synthetic data generation framework. We evaluate these two algorithms on the aspects of privacy preservation and accuracy, and compare them to the two state-of-the-art synthetic data generation algorithms DataSynthesizer and Synthetic Data Vault. We show that the synthetic data generated by Howso engine has good privacy and accuracy, which results the best overall score. On the other hand, our proposed random projection based framework can generate synthetic data with highest accuracy score, and has the fastest scalability.

Citations (1)

Summary

We haven't generated a summary for this paper yet.