Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Simulation of Lindbladian Dynamics via Repeated Interactions (2312.05371v4)

Published 8 Dec 2023 in quant-ph

Abstract: The Lindblad equation generalizes the Schr\"{o}dinger equation to quantum systems that undergo dissipative dynamics. The quantum simulation of Lindbladian dynamics is therefore non-unitary, preventing a naive application of state-of-the-art quantum algorithms. Here, we make use of an approximate correspondence between Lindbladian dynamics and evolution based on Repeated Interaction (RI) CPTP maps to write down a Hamiltonian formulation of the Lindblad dynamics and derive a rigorous error bound on the master equation. Specifically, we show that the number of interactions needed to simulate the Liouvillian $e{t\mathcal{L}}$ within error $\epsilon$ scales in a weak coupling limit as $\nu\in O(t2|\mathcal{L}|_{1\rightarrow 1}2/\epsilon)$. This is significant because the error in the Lindbladian approximation to the dynamics is not explicitly bounded in existing quantum algorithms for open system simulations. We then provide quantum algorithms to simulate RI maps using an iterative Qubitization approach and Trotter-Suzuki formulas and specifically show that for iterative Qubitization the number of operations needed to simulate the dynamics (for a fixed value of $\nu$) scales in a weak coupling limit as $O(\alpha_0 t + \nu \log(1/\epsilon)/\log\log(1/\epsilon))$ where $\alpha_0$ is the coefficient $1$-norm for the system and bath Hamiltonians. This scaling would appear to be optimal if the complexity of $\nu$ is not considered, which underscores the importance of considering the error in the Liouvillian that we reveal in this work.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. R. P. Feynman et al., Simulating physics with computers, Int. j. Theor. phys 21 (2018).
  2. S. Lloyd, Universal quantum simulators, Science 273, 1073 (1996).
  3. G. H. Low and I. L. Chuang, Hamiltonian simulation by qubitization, Quantum 3, 163 (2019).
  4. A. M. Childs and N. Wiebe, Hamiltonian simulation using linear combinations of unitary operations, arXiv preprint arXiv:1202.5822  (2012).
  5. T. C. Berkelbach and M. Thoss, Special topic on dynamics of open quantum systems, The Journal of Chemical Physics 152, 020401 (2020), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.5142731/15568495/020401_1_online.pdf .
  6. H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2002).
  7. A. Rivas and S. F. Huelga, Open quantum systems, Vol. 10 (Springer, 2012).
  8. L. Bruneau, A. Joye, and M. Merkli, Repeated interactions in open quantum systems, Journal of Mathematical Physics 55 (2014).
  9. R. Cleve and C. Wang, Efficient quantum algorithms for simulating lindblad evolution, arXiv preprint arXiv:1612.09512  (2016).
  10. X. Li and C. Wang, Simulating markovian open quantum systems using higher-order series expansion, arXiv preprint arXiv:2212.02051  (2022).
  11. T. Barthel and M. Kliesch, Quasilocality and efficient simulation of markovian quantum dynamics, Physical review letters 108, 230504 (2012).
  12. Z. Ding, X. Li, and L. Lin, Simulating open quantum systems using hamiltonian simulations, arXiv preprint arXiv:2311.15533  (2023).
  13. S. Attal and Y. Pautrat, From repeated to continuous quantum interactions, in Annales Henri Poincaré, Vol. 7 (Springer, 2006) pp. 59–104.
  14. D. Patel and M. M. Wilde, Wave matrix lindbladization i: Quantum programs for simulating markovian dynamics, Open Systems & Information Dynamics 30, 2350010 (2023a).
  15. C. Pellegrini and F. Petruccione, Non-markovian quantum repeated interactions and measurements, Journal of Physics A: Mathematical and Theoretical 42, 425304 (2009).
  16. M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information (Cambridge university press, 2010).
  17. V. Kliuchnikov, Synthesis of unitaries with clifford+ t circuits, arXiv preprint arXiv:1306.3200  (2013).
  18. M. Suzuki, Fractal decomposition of exponential operators with applications to many-body theories and monte carlo simulations, Physics Letters A 146, 319 (1990).
  19. N. Hatano and M. Suzuki, Finding exponential product formulas of higher orders, in Quantum Annealing and Other Optimization Methods (Springer Berlin Heidelberg, 2005) pp. 37–68.
  20. J. D. Whitfield, J. Biamonte, and A. Aspuru-Guzik, Simulation of electronic structure hamiltonians using quantum computers, Molecular Physics 109, 735 (2011).
  21. M. Hagan and N. Wiebe, Composite quantum simulations, arXiv preprint arXiv:2206.06409  (2022).
  22. J. Watrous, The theory of quantum information (Cambridge university press, 2018).
Citations (10)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com