Krylov Complexity and Dynamical Phase Transition in the quenched LMG model (2312.05321v2)
Abstract: Investigating the time evolution of complexity in quantum systems entails evaluating the spreading of the system's state across a defined basis in its corresponding Hilbert space. Recently, the Krylov basis has been identified as the one that minimizes this spreading. In this study, we develop a numerical exploration of the Krylov complexity in quantum states following a quench in the Lipkin-Meshkov-Glick model. Our results reveal that the long-term averaged Krylov complexity acts as an order parameter for this model. It effectively discriminates between the two dynamic phases induced by the quench, sharing a critical point with the conventional order parameter. Additionally, we examine the inverse participation ratio and the Shannon entropy in both the Krylov basis and the energy basis. A matching dynamic behavior is observed in both bases when the initial state possesses a specific symmetry. This behavior is analytically explained by establishing the equivalence between the Krylov basis and the pre-quench energy eigenbasis.
- W. Zurek, Complexity, Entropy And The Physics Of Information (CRC Press, 2018).
- S. Lloyd and H. Pagels, Complexity as thermodynamic depth, Annals of Physics 188, 186 (1988).
- W. H. Zurek, Algorithmic randomness and physical entropy, Phys. Rev. A 40, 4731 (1989).
- A. Berthiaume, W. van Dam, and S. Laplante, Quantum kolmogorov complexity, Journal of Computer and System Sciences 63, 201 (2001).
- J. Maldacena, S. H. Shenker, and D. Stanford, A bound on chaos, Journal of High Energy Physics 2016, 10.1007/jhep08(2016)106 (2016).
- E. B. Rozenbaum, L. A. Bunimovich, and V. Galitski, Early-time exponential instabilities in nonchaotic quantum systems, Phys. Rev. Lett. 125, 014101 (2020).
- C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. of Research of the Nation Bureau of Standards 45, 255 (1950).
- A. Dymarsky and M. Smolkin, Krylov complexity in conformal field theory, Phys. Rev. D 104, L081702 (2021).
- P. Caputa, J. M. Magan, and D. Patramanis, Geometry of krylov complexity, Phys. Rev. Res. 4, 013041 (2022).
- W. Mück and Y. Yang, Krylov complexity and orthogonal polynomials, Nuclear Physics B 984, 115948 (2022).
- C. Liu, H. Tang, and H. Zhai, Krylov complexity in open quantum systems, Phys. Rev. Res. 5, 033085 (2023).
- B. Bhattacharjee, P. Nandy, and T. Pathak, Operator dynamics in lindbladian syk: a krylov complexity perspective (2023b), arXiv:2311.00753 [quant-ph] .
- F. Ballar Trigueros and C.-J. Lin, Krylov complexity of many-body localization: Operator localization in krylov basis, SciPost Physics 13, 10.21468/scipostphys.13.2.037 (2022).
- P. Caputa and S. Liu, Quantum complexity and topological phases of matter, Physical Review B 106, 10.1103/physrevb.106.195125 (2022).
- K. Takahashi and A. del Campo, Shortcuts to adiabaticity in krylov space (2023), arXiv:2302.05460 [quant-ph] .
- B. Bhattacharjee, A lanczos approach to the adiabatic gauge potential (2023), arXiv:2302.07228 [quant-ph] .
- G. F. Scialchi, A. J. Roncaglia, and D. A. Wisniacki, Integrability to chaos transition through krylov approach for state evolution (2023), arXiv:2309.13427 [quant-ph] .
- J. Eisert, M. Friesdorf, and C. Gogolin, Quantum many-body systems out of equilibrium, Nature Physics 11, 124–130 (2015).
- H. Lipkin, N. Meshkov, and A. Glick, Validity of many-body approximation methods for a solvable model: (i). exact solutions and perturbation theory, Nuclear Physics 62, 188 (1965).
- G. Muga, R. Mayato, and I. Egusquiza, Time in Quantum Mechanics, Lecture Notes in Physics (Springer Berlin Heidelberg, 2007).
- G. Muga, A. Ruschhaupt, and A. Campo, Time in Quantum Mechanics - Vol. 2, Lecture Notes in Physics (Springer Berlin Heidelberg, 2012).
- A. del Campo, Long-time behavior of many-particle quantum decay, Phys. Rev. A 84, 012113 (2011).
- A. del Campo, Exact quantum decay of an interacting many-particle system: the calogero–sutherland model, New Journal of Physics 18, 015014 (2016).
- M. Heyl, A. Polkovnikov, and S. Kehrein, Dynamical quantum phase transitions in the transverse-field ising model, Phys. Rev. Lett. 110, 135704 (2013).
- C. N. Yang and T. D. Lee, Statistical theory of equations of state and phase transitions. i. theory of condensation, Phys. Rev. 87, 404 (1952).
- T. D. Lee and C. N. Yang, Statistical theory of equations of state and phase transitions. ii. lattice gas and ising model, Phys. Rev. 87, 410 (1952).
- F. Andraschko and J. Sirker, Dynamical quantum phase transitions and the loschmidt echo: A transfer matrix approach, Phys. Rev. B 89, 125120 (2014).
- S. Campbell, Criticality revealed through quench dynamics in the lipkin-meshkov-glick model, Phys. Rev. B 94, 184403 (2016).
- T. Hashizume, I. P. McCulloch, and J. C. Halimeh, Dynamical phase transitions in the two-dimensional transverse-field ising model, Phys. Rev. Res. 4, 013250 (2022).
- M. Schmitt and S. Kehrein, Dynamical quantum phase transitions in the kitaev honeycomb model, Phys. Rev. B 92, 075114 (2015).
- C. Karrasch and D. Schuricht, Dynamical phase transitions after quenches in nonintegrable models, Phys. Rev. B 87, 195104 (2013).
- R. Puebla, Finite-component dynamical quantum phase transitions, Phys. Rev. B 102, 220302 (2020).
- N. Defenu, A. Lerose, and S. Pappalardi, Out-of-equilibrium dynamics of quantum many-body systems with long-range interactions (2023), arXiv:2307.04802 [cond-mat.quant-gas] .
- M. Heyl, Dynamical quantum phase transitions in systems with broken-symmetry phases, Phys. Rev. Lett. 113, 205701 (2014).
- G. M. V. Viswanath, The Recursion Method: Application to Many-Body Dynamics (Springer-Verlag, 1994).
- S. Dusuel and J. Vidal, Continuous unitary transformations and finite-size scaling exponents in the lipkin-meshkov-glick model, Phys. Rev. B 71, 224420 (2005).
- P. Ribeiro, J. Vidal, and R. Mosseri, Exact spectrum of the lipkin-meshkov-glick model in the thermodynamic limit and finite-size corrections, Phys. Rev. E 78, 021106 (2008).
- A. Polkovnikov, Microscopic diagonal entropy and its connection to basic thermodynamic relations, Annals of Physics 326, 486–499 (2011).
- L. C. Céleri and L. u. Rudnicki, Gauge invariant quantum thermodynamics: consequences for the first law, arXiv:2104.10153 (2021).