Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic optimization for unit commitment applied to the security of supply: extended version (2312.05143v2)

Published 8 Dec 2023 in math.OC, cs.SY, and eess.SY

Abstract: Transmission system operators employ reserves to deal with unexpected variations of demand and generation to guarantee the security of supply. The French transmission system operator RTE dynamically sizes the required margins using a probabilistic approach relying on continuous forecasts of the main drivers of the uncertainties of the system imbalance and a 1 % risk threshold. However, this criterion does not specify which means to activate upward/downward and when to face a deficit of available margins versus the required margins. Thus, this work presents a strategy using a probabilistic unit commitment with a stochastic optimization-based approach, including the fixed and variable costs of units and the costs of lost load and production. The abstract problem is formulated with a multi-stage stochastic program and approximated with a heuristic called two-stage stochastic model predictive control. It solves a sequence of two-stage stochastic programs to conduct the central dispatch. An implementation is conducted by solving an approximated version with a single two-stage stochastic program. This method is tested on a real case study comprising nuclear and fossil-based units with French electrical consumption and renewable production.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. “Commission regulation (eu) 2017/2195 of 23 november 2017 establishing a guideline on electricity balancing, article 32.1,” 2017, accessed 4-December 2023, available at http://data.europa.eu/eli/reg/2017/2195/oj.
  2. “European commission consolidated text: Commission regulation (eu) 2017/1485 of 2 august 2017 establishing a guideline on electricity transmission system operation,” 2021, accessed 4-December 2023, available at http://data.europa.eu/eli/reg/2017/1485/2021-03-15.
  3. J. Dumas, V. Terrier, F. Bienvenu, S. Finet, and N. Grisey, “Dynamic sizing of required balancing capacities: the operational approach in france,” in 2023 19th International Conference on the European Energy Market (EEM), 2023, pp. 1–7.
  4. “Regulation (eu) 2019/943 of the european parliament and of the council of 5 june 2019 on the internal market for electricity, article 25,” 2019, accessed 4-December 2023, available at https://eur-lex.europa.eu/eli/reg/2019/943/oj.
  5. “Commission regulation (eu) 2017/1485 of 2 august 2017 establishing a guideline on electricity transmission system operation, article 157,” 2017, accessed 4-December 2023, available at https://eur-lex.europa.eu/eli/reg/2017/1485/oj.
  6. F. Bienvenu, “Le critère de sécurité d’approvisionnement à RTE,” 2019, [technical report, restricted to RTE].
  7. L. A. Roald, D. Pozo, A. Papavasiliou, D. K. Molzahn, J. Kazempour, and A. Conejo, “Power systems optimization under uncertainty: A review of methods and applications,” Electric Power Systems Research, vol. 214, p. 108725, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0378779622007842
  8. J. Zou, S. Ahmed, and X. A. Sun, “Multistage stochastic unit commitment using stochastic dual dynamic integer programming,” IEEE Transactions on Power Systems, vol. 34, no. 3, pp. 1814–1823, 2019.
  9. P. Carpentier, G. Gohen, J.-C. Culioli, and A. Renaud, “Stochastic optimization of unit commitment: a new decomposition framework,” IEEE Transactions on Power Systems, vol. 11, no. 2, pp. 1067–1073, 1996.
  10. M. V. Pereira and L. M. Pinto, “Multi-stage stochastic optimization applied to energy planning,” Mathematical programming, vol. 52, pp. 359–375, 1991.
  11. L. Lacoste, “Implementation of a stochastic dual dynamic programming approach to study the security of supply with a multi-stage stochastic dispatch,” 2023, master’s thesis conducted at RTE, technical report, restricted to RTE.
  12. R. Kumar, M. J. Wenzel, M. J. Ellis, M. N. ElBsat, K. H. Drees, and V. M. Zavala, “A stochastic dual dynamic programming framework for multiscale mpc.” IFAC-PapersOnLine, vol. 51, no. 20, pp. 493–498, 2018, 6th IFAC Conference on Nonlinear Model Predictive Control NMPC 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2405896318326995
  13. A. Fusco, D. Gioffrè, A. Francesco Castelli, C. Bovo, and E. Martelli, “A multi-stage stochastic programming model for the unit commitment of conventional and virtual power plants bidding in the day-ahead and ancillary services markets,” Applied Energy, vol. 336, p. 120739, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0306261923001034
  14. R. A. Al-Lawati, J. L. Crespo-Vazquez, T. I. Faiz, X. Fang, and M. Noor-E-Alam, “Two-stage stochastic optimization frameworks to aid in decision-making under uncertainty for variable resource generators participating in a sequential energy market,” Applied Energy, vol. 292, p. 116882, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0306261921003706
  15. J. Zou, S. Ahmed, and X. A. Sun, “Stochastic dual dynamic integer programming,” Mathematical Programming, vol. 175, pp. 461–502, 2019.
  16. A. Ruszczyński and A. Shapiro, “Stochastic programming models,” in Stochastic Programming, ser. Handbooks in Operations Research and Management Science.   Elsevier, 2003, vol. 10, pp. 1–64. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0927050703100011
  17. A. S. J. Zou, S. Ahmed, “Stochastic dual dynamic integer programming,” IEEE Transactions on Power Systems. [Online]. Available: https://mitsloan.mit.edu/shared/ods/documents?PublicationDocumentID=9333
  18. H. Zhao, M. Tanneau, and P. V. Hentenryck, “On the benefits of stochastic economic dispatch in real-time electricity markets,” 2023.
  19. C. Ramírez-Pico, I. Ljubić, and E. Moreno, “Benders adaptive-cuts method for two-stage stochastic programs,” Transportation Science, 2023.
  20. W. Chen, M. Tanneau, and P. V. Hentenryck, “End-to-end feasible optimization proxies for large-scale economic dispatch,” 2023.
  21. W. Chen, S. Park, M. Tanneau, and P. Van Hentenryck, “Learning optimization proxies for large-scale security-constrained economic dispatch,” Electric Power Systems Research, vol. 213, p. 108566, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0378779622006629
  22. R. Rockafellar and S. Uryasev, “Conditional value-at-risk for general loss distributions,” Journal of Banking & Finance, vol. 26, no. 7, pp. 1443–1471, 2002. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0378426602002716
Citations (1)

Summary

We haven't generated a summary for this paper yet.