Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Repeated quantum game as a stochastic game: Effects of the shadow of the future and entanglement (2312.05124v1)

Published 8 Dec 2023 in quant-ph

Abstract: We present a systematic investigation of the quantum games, constructed using a novel repeated game protocol, when played repeatedly ad infinitum. We focus on establishing that such repeated games -- by virtue of inherent quantum-mechanical randomness -- can be mapped to the paradigm of stochastic games. Subsequently, using the setup of two-player--two-action games, we explore the pure reactive strategies belonging to the set of reactive strategies, whose support in the quantum games is no longer countably finite but rather non-denumerably infinite. We find that how two pure strategies fare against each other is crucially dependent on the discount factor (the probability of occurrence of every subsequent round) and how much entangled the quantum states of the players are. We contrast the results obtained with the corresponding results in the classical setup and find fundamental differences between them: e.g, when the underlying game is the prisoner's dilemma, in the quantum game setup, always-defect strategy can be beaten by the tit-for-tat strategy for high enough discount factor.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. J. v. Neumann and O. Morgenstern, Theory of games and Economic Behavior (Princeton University Press, 2007).
  2. J. Eisert and M. Wilkens, Journal of Modern Optics 47, 2543 (2000).
  3. E. W. Piotrowski and J. Sładkowski, arxiv 0308027  (2003).
  4. E. W. Piotrowski and J. Sładkowski, Physica A: Statistical Mechanics and its Applications 308, 391 (2002).
  5. R. Axelrod, Journal of Conflict Resolution 24, 379–403 (1980).
  6. S. C. Benjamin and P. M. Hayden, Phys. Rev. A 64, 030301 (2001).
  7. S. J. van Enk and R. Pike, Phys. Rev. A 66, 024306 (2002).
  8. A. P. Flitney and L. C. Hollenberg, Physics Letters A 363, 381 (2007).
  9. M. Szopa, Optimum. Studia Ekonomiczne 5, 90 (2014).
  10. A. Li and X. Yong, Scientific Reports 4, 2045 (2014).
  11. A. Iqbal and A. Toor, Physics Letters A 300, 541 (2002).
  12. P. Frąckiewicz, Entropy 23, 604 (2021).
  13. K. Ikeda, SSRN Electronic Journal  (2020), 10.2139/ssrn.3600788.
  14. R. Axelrod, The Evolution of Cooperation (New York: Basic Books, 1984).
  15. E. Solan and N. Vieille, Proceedings of the National Academy of Sciences 112, 13743–13746 (2015).
  16. L. S. Shapley, Proceedings of the National Academy of Sciences 39, 1095–1100 (1953).
  17. D. Fundenberg and E. Maskin, The American Economic Review 80, 274 (1990).
  18. P. D. Bó and G. R. Fréchette, The American Economic Review 101, 411 (2011).
  19. M. A. NOWAK, Evolutionary Dynamics: Exploring the Equations of Life (Harvard University Press, 2006).
  20. J. F. Nash, Proceedings of the National Academy of Sciences 36, 48 (1950).
  21. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).
  22. A. Nayak and P. Shor, Phys. Rev. A 67, 012304 (2003).
  23. E. G. Hidalgo, “Quantum games and the relationships between quantum mechanics and game theory,”  (2016), arXiv:0803.0292 [quant-ph] .
  24. C. Bennett and G. Brassard, Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing , 175 (1984).
  25. W.-Y. Hwang and K. Matsumoto, Phys. Rev. A 66, 052311 (2002).
  26. J. W. Weibull, Evolutionary game theory (MIT Press, 2004).
  27. R. Dawkins, The Selfish Gene (Oxford University Press, Oxford,, 1976).
  28. E. Bomze, Central Eur. J. O.R.Econ 4, 25 (1996).
  29. L. Lambertini, Quantum Mechanics and Mathematical Economics are Isomorphic. John von Neumann between Physics and Economics, Working Papers (Dipartimento Scienze Economiche, Universita’ di Bologna, 2000).
  30. I. L. Glicksberg, Proceedings of the American Mathematical Society 3, 170 (1952).
  31. L. Marinatto and T. Weber, Physics Letters A 272, 291 (2000).
  32. P. Frąckiewicz, Journal of Physics A: Mathematical and Theoretical 46, 275301 (2013).
  33. L. Hurwicz and S. Reiter, Designing economic mechanisms (Cambridge University Press, 2008).
  34. U. Faigle, Mathematical game theory  (2022), 10.1142/12540.
  35. L. P. Kaelbling, M. L. Littman,  and A. W. Moore, “Reinforcement learning: A survey,”  (1996), arXiv:cs/9605103 [cs.AI] .
  36. J. F. Clauser and M. A. Horne, Phys. Rev. D 10, 526 (1974).
  37. J. F. Clauser and A. Shimony, Reports on Progress in Physics 41, 1881 (1978).
  38. D. Noever and M. Ciolino, “The turing deception,”  (2022), arXiv:2212.06721 [cs.LG] .
  39. S. Hameroff and R. Penrose, Physics of Life Reviews 11, 39 (2014).
  40. P. Shor, in Proceedings 35th Annual Symposium on Foundations of Computer Science (1994) pp. 124–134.
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com