Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Thermodynamic Computing System for AI Applications (2312.04836v1)

Published 8 Dec 2023 in cs.ET, cond-mat.stat-mech, and cs.AI

Abstract: Recent breakthroughs in AI algorithms have highlighted the need for novel computing hardware in order to truly unlock the potential for AI. Physics-based hardware, such as thermodynamic computing, has the potential to provide a fast, low-power means to accelerate AI primitives, especially generative AI and probabilistic AI. In this work, we present the first continuous-variable thermodynamic computer, which we call the stochastic processing unit (SPU). Our SPU is composed of RLC circuits, as unit cells, on a printed circuit board, with 8 unit cells that are all-to-all coupled via switched capacitances. It can be used for either sampling or linear algebra primitives, and we demonstrate Gaussian sampling and matrix inversion on our hardware. The latter represents the first thermodynamic linear algebra experiment. We also illustrate the applicability of the SPU to uncertainty quantification for neural network classification. We envision that this hardware, when scaled up in size, will have significant impact on accelerating various probabilistic AI applications.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. Sara Hooker, “The hardware lottery,” Communications of the ACM 64, 58–65 (2021).
  2. Pavel Izmailov, Sharad Vikram, Matthew D Hoffman,  and Andrew Gordon Gordon Wilson, “What are bayesian neural network posteriors really like?” in International conference on machine learning (PMLR, 2021) pp. 4629–4640.
  3. Yann LeCun, “Objective-driven AI,” https://www.youtube.com/watch?v=vyqXLJsmsrk (2023).
  4. Geoffrey Hinton, “Neurips 2022,” https://neurips.cc/Conferences/2022/ScheduleMultitrack?event=55869 (2022).
  5. Naeimeh Mohseni, Peter L. McMahon,  and Tim Byrnes, “Ising machines as hardware solvers of combinatorial optimization problems,” Nat. Rev. Phys. 4, 363–379 (2022).
  6. Navid Anjum Aadit, Andrea Grimaldi, Mario Carpentieri, Luke Theogarajan, John M. Martinis, Giovanni Finocchio,  and Kerem Y. Camsari, “Massively parallel probabilistic computing with sparse Ising machines,” Nat. Electron. 5, 460–468 (2022).
  7. George Mourgias-Alexandris, Hitesh Ballani, Natalia G Berloff, James H Clegg, Daniel Cletheroe, Christos Gkantsidis, Istvan Haller, Vassily Lyutsarev, Francesca Parmigiani, Lucinda Pickup, et al., “Analog iterative machine (aim): using light to solve quadratic optimization problems with mixed variables,” arXiv preprint arXiv:2304.12594  (2023).
  8. Takahiro Inagaki, Yoshitaka Haribara, Koji Igarashi, Tomohiro Sonobe, Shuhei Tamate, Toshimori Honjo, Alireza Marandi, Peter L. McMahon, Takeshi Umeki, Koji Enbutsu, Osamu Tadanaga, Hirokazu Takenouchi, Kazuyuki Aihara, Ken-ichi Kawarabayashi, Kyo Inoue, Shoko Utsunomiya,  and Hiroki Takesue, “A coherent ising machine for 2000-node optimization problems,” Science 354, 603–606 (2016).
  9. William Moy, Ibrahim Ahmed, Po-wei Chiu, John Moy, Sachin S Sapatnekar,  and Chris H Kim, “A 1,968-node coupled ring oscillator circuit for combinatorial optimization problem solving,” Nature Electronics 5, 310–317 (2022).
  10. Jeffrey Chou, Suraj Bramhavar, Siddhartha Ghosh,  and William Herzog, “Analog coupled oscillator based weighted ising machine,” Scientific reports 9, 14786 (2019).
  11. Tianshi Wang and Jaijeet Roychowdhury, “Oim: Oscillator-based ising machines for solving combinatorial optimisation problems,” in Unconventional Computation and Natural Computation: 18th International Conference, UCNC 2019, Tokyo, Japan, June 3–7, 2019, Proceedings 18 (Springer, 2019) pp. 232–256.
  12. Bradley H Theilman, Yipu Wang, Ojas Parekh, William Severa, J Darby Smith,  and James B Aimone, “Stochastic neuromorphic circuits for solving maxcut,” in 2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS) (IEEE, 2023) pp. 779–787.
  13. Patrick J. Coles, Collin Szczepanski, Denis Melanson, Kaelan Donatella, Antonio J. Martinez,  and Faris Sbahi, “Thermodynamic AI and the fluctuation frontier,”  (2023), arXiv:2302.06584 [cs.ET] .
  14. Tom Conte, Erik DeBenedictis, Natesh Ganesh, Todd Hylton, John Paul Strachan, R Stanley Williams, Alexander Alemi, Lee Altenberg, Gavin E. Crooks, James Crutchfield, et al., “Thermodynamic computing,” arXiv preprint arXiv:1911.01968  (2019).
  15. Maxwell Aifer, Kaelan Donatella, Max Hunter Gordon, Thomas Ahle, Daniel Simpson, Gavin E Crooks,  and Patrick J Coles, “Thermodynamic linear algebra,” arXiv preprint arXiv:2308.05660  (2023).
  16. Samuel Duffield, Maxwell Aifer, Gavin Crooks, Thomas Ahle,  and Patrick J Coles, “Thermodynamic matrix exponentials and thermodynamic parallelism,” arXiv preprint arXiv:2311.12759  (2023).
  17. Todd Hylton, “Thermodynamic neural network,” Entropy 22, 256 (2020).
  18. Natesh Ganesh, “A thermodynamic treatment of intelligent systems,” in 2017 IEEE International Conference on Rebooting Computing (ICRC) (2017) pp. 1–4.
  19. Patryk Lipka-Bartosik, Martí Perarnau-Llobet,  and Nicolas Brunner, “Thermodynamic computing via autonomous quantum thermal machines,” arXiv preprint arXiv:2308.15905  (2023).
  20. Kerem Y. Camsari, Brian M. Sutton,  and Supriyo Datta, “p-bits for probabilistic spin logic,” Appl. Phys. Rev. 6, 011305 (2019).
  21. Shuvro Chowdhury, Andrea Grimaldi, Navid Anjum Aadit, Shaila Niazi, Masoud Mohseni, Shun Kanai, Hideo Ohno, Shunsuke Fukami, Luke Theogarajan, Giovanni Finocchio, et al., “A full-stack view of probabilistic computing with p-bits: devices, architectures and algorithms,” IEEE Journal on Exploratory Solid-State Computational Devices and Circuits  (2023).
  22. Shashank Misra, Leslie C Bland, Suma G Cardwell, Jean Anne C Incorvia, Conrad D James, Andrew D Kent, Catherine D Schuman, J Darby Smith,  and James B Aimone, “Probabilistic neural computing with stochastic devices,” Advanced Materials 35, 2204569 (2023).
  23. Samuel Liu, T Patrick Xiao, Jaesuk Kwon, Bert J Debusschere, Sapan Agarwal, Jean Anne C Incorvia,  and Christopher H Bennett, “Bayesian neural networks using magnetic tunnel junction-based probabilistic in-memory computing,” Frontiers in Nanotechnology 4, 1021943 (2022).
  24. Vikash Kumar Mansinghka et al., Natively probabilistic computation, Ph.D. thesis, Citeseer (2009).
  25. Kevin P Murphy, Probabilistic machine learning: an introduction (MIT press, 2022).
  26. Christopher Williams and Carl Rasmussen, “Gaussian processes for regression,” Advances in neural information processing systems 8 (1995).
  27. Jeremiah Liu, Zi Lin, Shreyas Padhy, Dustin Tran, Tania Bedrax Weiss,  and Balaji Lakshminarayanan, “Simple and principled uncertainty estimation with deterministic deep learning via distance awareness,” Advances in Neural Information Processing Systems 33, 7498–7512 (2020).
  28. Tianqi Chen, Emily Fox,  and Carlos Guestrin, “Stochastic gradient hamiltonian monte carlo,” in International conference on machine learning (PMLR, 2014) pp. 1683–1691.
  29. Peter W Shor, “Scheme for reducing decoherence in quantum computer memory,” Physical review A 52, R2493 (1995).
  30. Peter W Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM review 41, 303–332 (1999).
  31. Isaac L Chuang, Neil Gershenfeld,  and Mark Kubinec, “Experimental implementation of fast quantum searching,” Physical review letters 80, 3408 (1998).
Citations (5)

Summary

  • The paper introduces the SPU, a continuous-variable thermodynamic computer that leverages RLC-based circuits and switched capacitances for all-to-all cell coupling.
  • It demonstrates fundamental AI operations including Gaussian sampling, matrix inversion via thermal equilibrium, and uncertainty quantification in neural networks.
  • Experimental results indicate the potential for substantial improvements in computing speed and energy efficiency in scalable probabilistic AI applications.

Thermodynamic Computing System for AI Applications

The exploration of novel computational paradigms is essential as we strive to surmount the limitations of classical digital hardware in AI applications. The paper "Thermodynamic Computing System for AI Applications" introduces a continuous-variable thermodynamic computer, termed as the stochastic processing unit (SPU), which brings an innovative approach to computing by leveraging the principles of thermodynamics. This approach holds promise for advancing probabilistic AI tasks, which have been identified as computationally challenging when processed through traditional digital architectures.

The presented SPU employs RLC circuits arranged on a printed circuit board as unit cells. These units are interconnected via switched capacitances, thereby enabling all-to-all coupling between eight cells. This hardware setup facilitates the execution of fundamental AI operations such as Gaussian sampling and matrix inversion—specifically marking the first thermodynamic linear algebra demonstration. In addition to these foundational tasks, the applicability of the SPU for uncertainty quantification in neural network classification is also showcased, signifying its potential impact on accelerating probabilistic AI applications once scaled.

Current digital hardware constraints necessitate an exploration of alternatives, as emphasized in recent literature which associates current AI limitations with the restrictive nature of digital computation. Probabilistic AI, which emphasizes Bayesian inference and uncertainty quantification, exhibits considerable computational demands that traditional systems struggle to accommodate efficiently, prompting exploration into analog and physics-based computing paradigms. Thermodynamic computing aligns the mathematical principles of algorithms with the inherent stochastic nature of thermodynamics, providing potential benefits in robustness and efficiency.

The paper elaborates on the theoretical underpinnings of thermodynamic computing, particularly within the framework of continuous variables, linking stochastic dynamics with physical systems influenced by conservative and dissipative forces. The equations governing the SPU's operations are derived from underdamped Langevin dynamics, providing a robust mathematical foundation for thermodynamically inspired computation. This alignment between the physics of thermodynamics and mathematical AI processes lays the groundwork for naturally emulating the stochastic behavior of probabilistic AI models, such as those relying on Gaussian distributions.

Experimental results with the SPU demonstrate its capability in Gaussian sampling, achieving output distributions that align well with theoretical expectations when sampling is conducted at optimal noise levels and rates. Matrix inversion, executed by utilizing the SPU to compute the covariance of voltage samples at thermal equilibrium, underscores the system's proficiency in linear algebra tasks. Moreover, real-world applicability is substantiated through demonstrations of Gaussian Process Regression (GPR) and uncertainty quantification in neural networks using Spectral-normalized Neural Gaussian Processes (SNGP).

The implications of these findings are profound, suggesting a pathway toward thermodynamic advantage, whereby scaled thermodynamic computers could outperform digital counterparts in speed and energy consumption for high-dimensional problems. The potential order-of-magnitude improvements in both computing time and energy efficiency, predicted by the authors' models for large-scale implementations, highlight the viability of thermodynamic computing as a transformative technology for AI tasks demanding extensive computational resources.

In conclusion, the development of the SPU and its demonstrated applications mark significant progress in the quest to realize efficient, robust, and scalable AI systems. Future research may explore the scaling of these systems and additional perturbations to unlock broader applications such as generative models. The convergence of thermodynamic principles with AI computation offers a compelling vision for future hardware systems, potentially bridging the gap between current AI methodologies and the requirements for advanced, probabilistic reasoning in AI systems.

Youtube Logo Streamline Icon: https://streamlinehq.com