Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Efficient percolation simulations for lossy photonic fusion networks (2312.04639v2)

Published 7 Dec 2023 in quant-ph and physics.comp-ph

Abstract: The study of percolation phenomena has various applications ranging from social networks or materials science to quantum information. The most common percolation models are bond- or site-percolation for which the Newman-Ziff algorithm enables an efficient simulation. Here, we consider several non-standard percolation models that appear in the context of measurement-based photonic quantum computing with so-called graph states and fusion networks. The associated percolation thresholds determine the tolerance to photon loss in such systems and we develop modifications of the Newman-Ziff algorithm to perform the corresponding percolation simulation efficiently. We demonstrate our algorithms by using them to characterize exemplary fusion networks and graph states. The used source code is provided as an open-source repository.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188 (2001).
  2. S. Paesani and B. J. Brown, Phys. Rev. Lett. 131, 120603 (2023).
  3. D. E. Browne and T. Rudolph, Phys. Rev. Lett. 95, 010501 (2005).
  4. D. Stauffer and A. Aharony, Introduction to percolation theory (CRC press, 2018).
  5. M. E. J. Newman and R. M. Ziff, Phys. Rev. E 64, 016706 (2001).
  6. M. Gimeno-Segovia, Towards practical linear optical quantum computing, Ph.D. thesis, Imperial College London (2016).
  7. R. J. Warburton, Nat. Mater. 12, 483 (2013).
  8. S. Simmons, arXiv:2311.04858  (2023).
  9. N. H. Lindner and T. Rudolph, Phys. Rev. Lett. 103, 113602 (2009).
  10. W. P. Grice, Phys. Rev. A 84, 042331 (2011).
  11. F. Ewert and P. van Loock, Phys. Rev. Lett. 113, 140403 (2014).
  12. M. C. Löbl et al., “perqolate,” https://github.com/nbi-hyq/perqolate (2023b).
  13. S. Aaronson and D. Gottesman, Phys. Rev. A 70, 052328 (2004).
  14. J.-O. Choi and U. Yu, J. Comput. Phys. 386, 1 (2019).
  15. K. Malarz, Chaos: An Interdisciplinary Journal of Nonlinear Science 32, 083123 (2022).
  16. R. E. Tarjan, Journal of the ACM (JACM) 22, 215 (1975).
  17. B. A. Galler and M. J. Fisher, Communications of the ACM 7, 301 (1964).
  18. N. Delfosse and N. H. Nickerson, Quantum 5, 595 (2021).
  19. S. D. Barrett and P. Kok, Phys. Rev. A 71, 060310(R) (2005).
  20. L.-M. Duan and R. Raussendorf, Phys. Rev. Lett. 95, 080503 (2005).
  21. S. C. Van der Marck, Int. J. Mod. Phys. C 9, 529 (1998).
  22. S. D. Barrett and T. M. Stace, Phys. Rev. Lett. 105, 200502 (2010).
  23. Ł. Kurzawski and K. Malarz, Rep. Math. Phys. 70, 163 (2012).
  24. K. Malarz and S. Galam, Phys. Rev. E 71, 016125 (2005).
  25. Z. Xun and R. M. Ziff, Phys. Rev. E 102, 012102 (2020).
  26. M. F. Sykes and J. W. Essam, J. Math. Phys. 5, 1117 (1964).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com