Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Massive black hole binaries in LISA: constraining cosmological parameters at high redshifts (2312.04632v2)

Published 7 Dec 2023 in astro-ph.CO and gr-qc

Abstract: One of the scientific objectives of the Laser Interferometer Space Antenna (LISA) is to probe the expansion of the Universe using gravitational wave observations. Indeed, as gravitational waves from the coalescence of a massive black hole binary (MBHB) carry direct information of its luminosity distance, an accompanying electromagnetic (EM) counterpart can be used to determine its redshift. This method of $bright$ $sirens$, when applied to LISA, enables one to build a gravitational Hubble diagram to high redshift. In this work, we forecast the ability of LISA-detected MBHB bright sirens to constrain cosmological models. The expected EM emission from MBHBs can be detected up to redshift $z\sim 7$ with future astronomical facilities, and the distribution of MBHBs with detectable counterpart peaks at $z\sim 2-3$. Therefore, we propose several methods to leverage the ability of LISA to constrain the expansion of the Universe at $z\sim 2-3$, a poorly charted epoch in cosmography. We find that the most promising method consists in using a model-independent approach based on a spline interpolation of the luminosity distance-redshift relation: in this case, LISA can constrain the Hubble parameter at $z\sim2-3$ with a relative precision of at least $10\%$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. P. Amaro-Seoane et al., ArXiv e-prints  (2017), arXiv:1702.00786 [astro-ph.IM] .
  2. B. F. Schutz, Nature 323, 310 (1986).
  3. P. Auclair et al., arXiv e-prints , arXiv:2204.05434 (2022), arXiv:2204.05434 [astro-ph.CO] .
  4. D. E. Holz and S. A. Hughes, The Astrophysical Journal 629, 15 (2005).
  5. W. Del Pozzo, Phys. Rev. D 86, 043011 (2012).
  6. B. P. Abbott et al., Nature (London) 551, 85 (2017a), arXiv:1710.05835 [astro-ph.CO] .
  7. D. J. D’Orazio and M. Charisi, arXiv e-prints , arXiv:2310.16896 (2023), arXiv:2310.16896 [astro-ph.HE] .
  8. K. Kyutoku and N. Seto, Phys. Rev. D 95, 083525 (2017a).
  9. C. Dalang and T. Baker, arXiv e-prints , arXiv:2310.08991 (2023), arXiv:2310.08991 [astro-ph.CO] .
  10. J. M. Ezquiaga and D. E. Holz, Phys. Rev. Lett.  129, 061102 (2022), arXiv:2202.08240 [astro-ph.CO] .
  11. R. Gray et al.,   (2023), arXiv:2308.02281 [astro-ph.CO] .
  12. C. Messenger and J. Read, Phys. Rev. Lett.  108, 091101 (2012), arXiv:1107.5725 [gr-qc] .
  13. C. Ye and M. Fishbach, Phys. Rev. D 104, 043507 (2021), arXiv:2103.14038 [astro-ph.CO] .
  14. Planck Collaboration et al., Astronomy and Astrophysics 641, A6 (2020), arXiv:1807.06209 [astro-ph.CO] .
  15. E. Abdalla et al., Journal of High Energy Astrophysics 34, 49 (2022), arXiv:2203.06142 [astro-ph.CO] .
  16. L. Perivolaropoulos and F. Skara, New Astronomy Reviews 95, 101659 (2022), arXiv:2105.05208 [astro-ph.CO] .
  17. A. G. Riess et al., Astrophys. J.  853, 126 (2018), arXiv:1710.00844 [astro-ph.CO] .
  18. M. Punturo et al., Classical and Quantum Gravity 27, 194002 (2010).
  19. B. P. Abbott et al., Classical and Quantum Gravity 34, 044001 (2017b), arXiv:1607.08697 [astro-ph.IM] .
  20. C. Meegan et al., Astrophys. J.  702, 791 (2009), arXiv:0908.0450 [astro-ph.IM] .
  21. L. Amati et al., Advances in Space Research 62, 191 (2018), arXiv:1710.04638 [astro-ph.IM] .
  22. K. Kyutoku and N. Seto, Phys. Rev. D 95, 083525 (2017b), arXiv:1609.07142 [astro-ph.CO] .
  23. C. L. MacLeod and C. J. Hogan, Phys. Rev. D 77, 043512 (2008), arXiv:0712.0618 [astro-ph] .
  24. C. Caprini and N. Tamanini, Journal of Cosmology and Astroparticle Physics 2016, 006 (2016), arXiv:1607.08755 [astro-ph.CO] .
  25. E. Belgacem et al., Journal of Cosmology and Astroparticle Physics 2019, 024 (2019), arXiv:1906.01593 [astro-ph.CO] .
  26. P. Amaro-Seoane et al., arXiv e-prints , arXiv:2203.06016 (2022), arXiv:2203.06016 [gr-qc] .
  27. G. Risaliti and E. Lusso, Nature Astronomy 3, 272 (2019), arXiv:1811.02590 [astro-ph.CO] .
  28. L. Amati and M. Della Valle, International Journal of Modern Physics D 22, 1330028 (2013), arXiv:1310.3141 [astro-ph.CO] .
  29. A. Loeb, The Astrophysical Journal Letters 499, L111 (1998), arXiv:astro-ph/9802122 [astro-ph] .
  30. E. Barausse, Monthly Notices of the Royal Astronomical Society 423, 2533 (2012), arXiv:1201.5888 [astro-ph.CO] .
  31. A. De Rosa et al., New Astronomy Reviews , 101525 (2020).
  32. Ž. Ivezić et al., Astrophys. J.  873, 111 (2019), arXiv:0805.2366 [astro-ph] .
  33. M. Milosavljevic and E. S. Phinney, Astrophys. J. 622, L93 (2005), arXiv:astro-ph/0410343 [astro-ph] .
  34. https://www.lsst.org/about.
  35. L. Piro et al., Experimental Astronomy  (2022), 10.1007/s10686-022-09865-6, arXiv:2110.15677 [astro-ph.HE] .
  36. E-ELT, https://www.eso.org/sci/facilities/eelt/.
  37. S. Dodelson, Modern Cosmology (2003).
  38. O. F. Piattella, arXiv e-prints , arXiv:1803.00070 (2018), arXiv:1803.00070 [astro-ph.CO] .
  39. E. V. Linder, Phys. Rev. Lett.  90, 091301 (2003), arXiv:astro-ph/0208512 [astro-ph] .
  40. M. Chevallier and D. Polarski, International Journal of Modern Physics D 10, 213 (2001), arXiv:gr-qc/0009008 [gr-qc] .
  41. P. Virtanen et al., Nature Methods 17, 261 (2020), arXiv:1907.10121 [cs.MS] .
  42. It may happen that the same EMcp is extracted twice during the second step. In this case, we remove the second one and extract a new EMcp.
  43. S. Canevarolo and N. E. Chisari, arXiv e-prints , arXiv:2310.12764 (2023), arXiv:2310.12764 [astro-ph.CO] .
  44. G. Cusin and N. Tamanini, Monthly Notices of the Royal Astronomical Society 504, 3610 (2021), arXiv:2011.15109 [astro-ph.CO] .
  45. C. Laigle et al., Monthly Notices of the Royal Astronomical Society 486, 5104 (2019), arXiv:1903.10934 [astro-ph.GA] .
  46. W. Del Pozzo, Phys. Rev. D 86, 043011 (2012), arXiv:1108.1317 [astro-ph.CO] .
  47. Here the accuracy is defined as the difference between the comoving distance in the matter-only approximation and in ΛΛ\Lambdaroman_ΛCDM at a given redshift divided over the dcsubscript𝑑𝑐d_{c}italic_d start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT from ΛΛ\Lambdaroman_ΛCDM.
  48. In order to select the systems in a given redshift bin, we use the value of zemsubscript𝑧emz_{\rm em}italic_z start_POSTSUBSCRIPT roman_em end_POSTSUBSCRIPT from Eq. 21.
  49. J. Lin, IEEE Transactions on Information Theory 37, 145 (1991).
  50. N. Tamanini, J. Phys. Conf. Ser. 840, 012029 (2017), arXiv:1612.02634 [astro-ph.CO] .
  51. D. Laghi et al., in preparation.
  52. M. Betoule et al., Astronomy and Astrophysics 568, A22 (2014), arXiv:1401.4064 [astro-ph.CO] .
  53. L. Parker and A. Raval, Phys. Rev. D 62, 083503 (2000).
Citations (2)

Summary

We haven't generated a summary for this paper yet.