Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Privacy-preserving quantum federated learning via gradient hiding (2312.04447v1)

Published 7 Dec 2023 in quant-ph, cs.CR, cs.DC, and cs.LG

Abstract: Distributed quantum computing, particularly distributed quantum machine learning, has gained substantial prominence for its capacity to harness the collective power of distributed quantum resources, transcending the limitations of individual quantum nodes. Meanwhile, the critical concern of privacy within distributed computing protocols remains a significant challenge, particularly in standard classical federated learning (FL) scenarios where data of participating clients is susceptible to leakage via gradient inversion attacks by the server. This paper presents innovative quantum protocols with quantum communication designed to address the FL problem, strengthen privacy measures, and optimize communication efficiency. In contrast to previous works that leverage expressive variational quantum circuits or differential privacy techniques, we consider gradient information concealment using quantum states and propose two distinct FL protocols, one based on private inner-product estimation and the other on incremental learning. These protocols offer substantial advancements in privacy preservation with low communication resources, forging a path toward efficient quantum communication-assisted FL protocols and contributing to the development of secure distributed quantum machine learning, thus addressing critical privacy concerns in the quantum computing era.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. D. Cuomo, M. Caleffi, and A. S. Cacciapuoti, Towards a distributed quantum computing ecosystem, IET Quantum Communication 1, 3 (2020).
  2. A. Montanaro and C. Shao, Quantum communication complexity of linear regression (2023), arXiv:2210.01601 [quant-ph] .
  3. D. Gilboa and J. R. McClean, Exponential quantum communication advantage in distributed learning (2023), arXiv:2310.07136 [quant-ph] .
  4. C. H. Bennett and G. Brassard, Quantum cryptography: Public key distribution and coin tossing, Theoretical Computer Science 560, 7 (2014).
  5. A. Broadbent, J. Fitzsimons, and E. Kashefi, Universal blind quantum computation, in 2009 50th Annual IEEE Symposium on Foundations of Computer Science (IEEE, 2009).
  6. J. F. Fitzsimons, Private quantum computation: an introduction to blind quantum computing and related protocols, npj Quantum Information 3, 10.1038/s41534-017-0025-3 (2017).
  7. B. Zhao, K. R. Mopuri, and H. Bilen, idlg: Improved deep leakage from gradients (2020), arXiv:2001.02610 [cs.LG] .
  8. S. Y.-C. Chen and S. Yoo, Federated quantum machine learning, Entropy 23, 10.3390/e23040460 (2021).
  9. R. Huang, X. Tan, and Q. Xu, Quantum federated learning with decentralized data, IEEE Journal of Selected Topics in Quantum Electronics 28, 1 (2022).
  10. C. Chu, L. Jiang, and F. Chen, Cryptoqfl: Quantum federated learning on encrypted data (2023), arXiv:2307.07012 [quant-ph] .
  11. IEEE standard for floating-point arithmetic.
  12. M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information (Cambridge university press, 2010).
  13. H.-K. Lo, X. Ma, and K. Chen, Decoy state quantum key distribution, Phys. Rev. Lett. 94, 230504 (2005).
  14. Y.-B. Sheng and L. Zhou, Distributed secure quantum machine learning, Science Bulletin 62, 1025 (2017).
  15. F. Centrone, E. Diamanti, and I. Kerenidis, Quantum protocol for electronic voting without election authorities, Physical Review Applied 18, 10.1103/physrevapplied.18.014005 (2022).
  16. A. Shamir, How to share a secret, Communications of the ACM 22, 612 (1979).
Citations (11)

Summary

We haven't generated a summary for this paper yet.