Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Chirality induced spin selectivity in chiral crystals (2312.04366v2)

Published 7 Dec 2023 in cond-mat.mes-hall and cond-mat.mtrl-sci

Abstract: Chirality is a fundamental property of great importance in physics, chemistry, and biology, and has recently been found to generate unexpected spin polarization for electrons passing through organic molecules, known as chirality-induced spin selectivity (CISS). CISS shows promising application potential in spintronic devices, spin-controlled chemistry, and enantiomer separation. It focuses on organic molecules that exhibit poor electronic conductivity and inherent complexities, such as the debated role of SOC at the molecule-metal interface. In this work, we go beyond organic molecules and study chiral solids with excellent electrical conductivity, intrinsic SOC, and topological electronic structures. We demonstrate that electrons exhibit both spin and orbital polarization as they pass through chiral crystals. Both polarization increases with material thickness before saturating to the bulk values. The spin polarization is proportional to intrinsic SOC while the orbital polarization is insensitive to SOC. The large spin polarization comes with strong electrical magnetochiral anisotropy in the magneto-transport of these chiral crystals (e.g., RhSi). Our work reveals the interplay of chirality, electron spin, and orbital in chiral crystals, paving the way for developing chiral solids for chirality-induced phenomena.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (67)
  1. Siegel, J. S. Homochiral imperative of molecular evolution. \JournalTitleChirality: The Pharmacological, Biological, and Chemical Consequences of Molecular Asymmetry 10, 24–27 (1998).
  2. Chirality-driven topological electronic structure of dna-like materials. \JournalTitleNat. Mater. 20, 638–644 (2021).
  3. Yang, Q. et al. Monopole-like orbital-momentum locking and the induced orbital transport in topological chiral semimetals. \JournalTitlearXiv preprint arXiv:2307.02668 (2023).
  4. Sessi, P. et al. Handedness-dependent quasiparticle interference in the two enantiomers of the topological chiral semimetal pdga. \JournalTitleNature communications 11, 3507 (2020).
  5. Chang, G. et al. Topological quantum properties of chiral crystals. \JournalTitleNature materials 17, 978–985 (2018).
  6. Yao, M. et al. Observation of giant spin-split fermi-arc with maximal chern number in the chiral topological semimetal PtGa. \JournalTitleNat. Commun. 11, 1–7 (2020).
  7. Krieger, J. A. et al. Parallel spin-momentum locking in a chiral topological semimetal. \JournalTitlearXiv preprint arXiv:2210.08221 (2022).
  8. Chiral molecules and the electron spin. \JournalTitleNature Reviews Chemistry 3, 250–260 (2019).
  9. Chiral molecules and the spin selectivity effect. \JournalTitleJ. Phys. Chem. Lett. 11, 3660–3666 (2020).
  10. Chiral spintronics. \JournalTitleNature Reviews Physics 3, 328–343 (2021).
  11. Spintronics and chirality: Spin selectivity in electron transport through chiral molecules. \JournalTitleAnnual review of physical chemistry 66, 263–281 (2015).
  12. Enhanced electrochemical water splitting with chiral molecule-coated fe3o4 nanoparticles. \JournalTitleACS Energy Letters 3, 2308–2313 (2018).
  13. Mtangi, W. et al. Control of electrons’ spin eliminates hydrogen peroxide formation during water splitting. \JournalTitleJournal of the American Chemical Society 139, 2794–2798 (2017).
  14. Bian, Z. et al. Hybrid chiral mos2 layers for spin-polarized charge transport and spin-dependent electrocatalytic applications. \JournalTitleAdvanced Science 9, 2201063 (2022).
  15. Banerjee-Ghosh, K. et al. Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates. \JournalTitleScience 360, 1331–1334 (2018).
  16. Stolz, S. et al. Asymmetric elimination reaction on chiral metal surfaces. \JournalTitleAdv. Mater. 34, 2104481 (2022).
  17. Göhler, B. et al. Spin selectivity in electron transmission through self-assembled monolayers of double-stranded dna. \JournalTitleScience 331, 894–897 (2011).
  18. Niño, M. Á. et al. Enantiospecific spin polarization of electrons photoemitted through layers of homochiral organic molecules. \JournalTitleAdvanced Materials 26, 7474–7479 (2014).
  19. Mondal, A. K. et al. Spin filtering in supramolecular polymers assembled from achiral monomers mediated by chiral solvents. \JournalTitleJournal of the American Chemical Society 143, 7189–7195 (2021).
  20. Asymmetric scattering of polarized electrons by organized organic films of chiral molecules. \JournalTitleScience 283, 814–816 (1999).
  21. Ziv, A. et al. Afm-based spin-exchange microscopy using chiral molecules. \JournalTitleAdvanced Materials 31, 1904206 (2019).
  22. Huizi-Rayo, U. et al. An ideal spin filter: Long-range, high-spin selectivity in chiral helicoidal 3-dimensional metal organic frameworks. \JournalTitleNano Letters 20, 8476–8482 (2020).
  23. Lu, H. et al. Spin-dependent charge transport through 2d chiral hybrid lead-iodide perovskites. \JournalTitleScience advances 5, eaay0571 (2019).
  24. Kim, Y.-H. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. \JournalTitleScience 371, 1129–1133 (2021).
  25. Qian, Q. et al. Chiral molecular intercalation superlattices. \JournalTitleNature 606, 902–908 (2022).
  26. Al-Bustami, H. et al. Atomic and molecular layer deposition of chiral thin films showing up to 99% spin selective transport. \JournalTitleNano Letters 22, 5022–5028 (2022).
  27. Adhikari, Y. et al. Interplay of structural chirality, electron spin and topological orbital in chiral molecular spin valves. \JournalTitleNature Communications 14, 5163, DOI: 10.1038/s41467-023-40884-9 (2023). 2209.08117.
  28. Calavalle, F. et al. Gate-tuneable and chirality-dependent charge-to-spin conversion in tellurium nanowires. \JournalTitleNat. Mater. 21, 526–532 (2022).
  29. Observation of current-induced bulk magnetization in elemental tellurium. \JournalTitleNature communications 8, 954 (2017).
  30. Inui, A. et al. Chirality-induced spin-polarized state of a chiral crystal crnb 3 s 6. \JournalTitlePhys. Rev. Lett. 124, 166602 (2020).
  31. Shiota, K. et al. Chirality-induced spin polarization over macroscopic distances in chiral disilicide crystals. \JournalTitlePhys. Rev. Lett. 127, 126602 (2021).
  32. Gyrotropic magnetic effect and the magnetic moment on the fermi surface. \JournalTitlePhysical review letters 116, 077201 (2016).
  33. Berry phase effects on electronic properties. \JournalTitleReviews of modern physics 82, 1959 (2010).
  34. Ryndyk, D. A. et al. Theory of quantum transport at nanoscale. \JournalTitleSpringer Series in Solid-State Sciences 184, 9 (2016).
  35. Transient charge and energy flow in the wide-band limit. \JournalTitleJ. Chem. Theory Comput. 14, 2495–2504 (2018).
  36. Büttiker, M. Four-terminal phase-coherent conductance. \JournalTitlePhys. Rev. Lett. 57, 1761 (1986).
  37. Kettner, M. et al. Spin filtering in electron transport through chiral oligopeptides. \JournalTitleJ. Phys. Chem. C 119, 14542–14547 (2015).
  38. Unusual spin polarization in the chirality-induced spin selectivity. \JournalTitleACS nano 16, 18601–18607 (2022).
  39. Ōnuki, Y. et al. Chiral-structure-driven split fermi surface properties in tasi2, nbsi2, and vsi2. \JournalTitleJ. Phys. Soc. Japan 83, 061018 (2014).
  40. Detection of chirality-induced spin polarization over millimeters in polycrystalline bulk samples of chiral disilicides nbsi2 and tasi2. \JournalTitleAppl. Phys. Lett. 119 (2021).
  41. Yang, Q. et al. Topological engineering of Pt‐group‐metal‐based chiral crystals toward high‐efficiency hydrogen evolution catalysts. \JournalTitleAdv. Mater. 32, 1908518 (2020).
  42. Schröter, N. B. et al. Observation and control of maximal chern numbers in a chiral topological semimetal. \JournalTitleScience 369, 179–183 (2020).
  43. Rao, Z. et al. Observation of unconventional chiral fermions with long fermi arcs in CoSi. \JournalTitleNature 567, 496 (2019).
  44. Strong bulk photovoltaic effect in chiral crystals in the visible spectrum. \JournalTitlePhys. Rev. B 100, 245206 (2019).
  45. Highly enantioselective adsorption of small prochiral molecules on a chiral intermetallic compound. \JournalTitleAngew. Chem. Int. Ed. 127, 3974–3978 (2015).
  46. Li, G. et al. Observation of asymmetric oxidation catalysis with b20 chiral crystals. \JournalTitleAngew. Chem. Int. Ed. 62, e202303296 (2023).
  47. Liu, T. et al. Linear and nonlinear two-terminal spin-valve effect from chirality-induced spin selectivity. \JournalTitleACS nano 14, 15983–15991 (2020).
  48. Electrical magnetochiral anisotropy. \JournalTitlePhys. Rev. Lett. 87, 236602 (2001).
  49. Theory of chiral induced spin selectivity. \JournalTitleNano Lett. 19, 5253–5259 (2019).
  50. Spin-dependent electron transmission model for chiral molecules in mesoscopic devices. \JournalTitlePhys. Rev. B 99, 024418 (2019).
  51. Detecting chirality in two-terminal electronic nanodevices. \JournalTitleNano Lett. 20, 6148–6154 (2020).
  52. Comment on “spin-dependent electron transmission model for chiral molecules in mesoscopic devices”. \JournalTitlePhys. Rev. B 101, 026403 (2020).
  53. Reply to “comment on ‘spin-dependent electron transmission model for chiral molecules in mesoscopic devices’”. \JournalTitlePhys. Rev. B 101, 026404 (2020).
  54. Nonreciprocal nature and magnetochiral charge polarization in chiral molecular devices. \JournalTitlearXiv preprint arXiv:2201.03623 (2022).
  55. Magneto-chiral anisotropy in charge transport through single-walled carbon nanotubes. \JournalTitleThe Journal of chemical physics 117, 11315–11319 (2002).
  56. Wei, J. et al. Magnetic-field asymmetry of nonlinear transport in carbon nanotubes. \JournalTitlePhys. Rev. Lett. 95, 256601 (2005).
  57. Electrical magnetochiral anisotropy in a bulk chiral molecular conductor. \JournalTitleNat. Commun. 5, 3757 (2014).
  58. Strong electrical magnetochiral anisotropy in tellurium. \JournalTitlePhys. Rev. B 99, 245153 (2019).
  59. Yokouchi, T. et al. Electrical magnetochiral effect induced by chiral spin fluctuations. \JournalTitleNat. Commun. 8, 866 (2017).
  60. Anomalous nonreciprocal electrical transport on chiral magnetic order. \JournalTitlePhys. Rev. Lett. 122, 057206 (2019).
  61. Qin, F. et al. Superconductivity in a chiral nanotube. \JournalTitleNat. Commun. 8, 14465 (2017).
  62. Spin polarization in transport studies of chirality-induced spin selectivity. \JournalTitleACS Nano 17, 19502–19507, DOI: 10.1021/acsnano.3c06133 (2023).
  63. Maurenbrecher, H. et al. Chiral anisotropic magnetoresistance of ferromagnetic helices. \JournalTitleApplied Physics Letters 112, 242401, DOI: 10.1063/1.5027660 (2018). https://pubs.aip.org/aip/apl/article-pdf/doi/10.1063/1.5027660/14512894/242401_1_online.pdf.
  64. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. \JournalTitleComput. Mater. Sci. 6, 15–50 (1996).
  65. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. \JournalTitlePhys. Rev. B 54, 11169 (1996).
  66. Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme. \JournalTitlePhys. Rev. B 59, 1743 (1999).
  67. Generalized gradient approximation made simple. \JournalTitlePhys. Rev. Lett. 77, 3865 (1996).
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com