Impact of primordial black holes on the formation of the first stars and galaxies (2312.04085v3)
Abstract: Recent gravitational wave (GW) observations of binary black hole (BH) mergers and the stochastic GW background have triggered renewed interest in primordial black holes (PBHs) in the stellar-mass ($\sim 10 - 100\ \rm M_\odot$) and supermassive regimes ($\sim 107 - 10{11}\ \rm M_\odot$). Although only a small fraction ($\lesssim 1\%$) of dark matter (DM) in the form of PBHs is required to explain such observations, these PBHs may play important roles in early structure/star/galaxy formation. In this chapter, we combine semi-analytical analysis and cosmological simulations to explore the possible impact of PBHs on the formation of the first stars and galaxies, taking into account two (competing) effects of PBHs: acceleration of structure formation and gas heating by BH accretion feedback. We find that the impact of stellar-mass PBHs (allowed by existing observational constraints) on primordial star formation is likely minor, although they do alter the properties of the first star-forming halos/clouds and can potentially trigger the formation of massive BHs, while supermassive PBHs serve as seeds of massive structures that can explain the apparent overabundance of massive galaxies in recent observations. Our tentative models and results call for future studies with improved modeling of the interactions between PBHs, particle DM, and baryons to better understand the impact of PBHs on early star/galaxy/structure formation and their imprints in high-redshift observations.
- S. W. Hawking. Black hole explosions. Nature, 248:30–31, 1974.
- Black holes in the early Universe. Mon. Not. Roy. Astron. Soc., 168:399–415, 1974.
- R. Abbott et al. Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog. Astrophys. J. Lett., 913(1):L7, 2021.
- Merger rate of primordial black-hole binaries. Phys. Rev. D, 96(12):123523, 2017.
- Gravitational Waves from Primordial Black Hole Mergers. JCAP, 09:037, 2017.
- Two populations of LIGO-Virgo black holes. JCAP, 03:068, 2021.
- Constraining the primordial black hole scenario with Bayesian inference and machine learning: the GWTC-2 gravitational wave catalog. Phys. Rev. D, 103(2):023026, 2021.
- Bayesian analysis of LIGO-Virgo mergers: Primordial vs. astrophysical black hole populations. Phys. Rev. D, 102:123524, 2020.
- Michela Mapelli. Formation channels of single and binary stellar-mass black holes, pages 1–65. Springer, 2020.
- Bayesian Evidence for Both Astrophysical and Primordial Black Holes: Mapping the GWTC-2 Catalog to Third-Generation Detectors. JCAP, 05:003, 2021.
- Searching for a subpopulation of primordial black holes in LIGO-Virgo gravitational-wave data. Phys. Rev. D, 105(8):083526, 2022.
- Gabriella Agazie et al. The NANOGrav 15 yr Data Set: Constraints on Supermassive Black Hole Binaries from the Gravitational-wave Background. Astrophys. J. Lett., 952(2):L37, 2023.
- Scrutinizing the Primordial Black Holes Interpretation of PTA Gravitational Waves and JWST Early Galaxies. arXiv e-prints, page arXiv:2307.01457, July 2023.
- Towards supermassive primordial black holes from inflationary bubbles. arXiv e-prints, page arXiv:2312.11982, December 2023.
- Constraints on primordial black holes. Rept. Prog. Phys., 84(11):116902, 2021.
- Primordial Black Holes as Generators of Cosmic Structures. Mon. Not. Roy. Astron. Soc., 478(3):3756–3775, 2018.
- Growth of structure seeded by primordial black holes. Astrophys. J., 665:1277–1287, 2007.
- Early structure formation in primordial black hole cosmologies. Phys. Rev. D, 100(8):083528, 2019.
- Effects of stellar-mass primordial black holes on first star formation. Mon. Not. Roy. Astron. Soc., 514(2):2376–2396, 2022.
- Foundations of Black Hole Accretion Disk Theory. Living Rev. Rel., 16:1, 2013.
- Joseph Silk. Unleashing Positive Feedback: Linking the Rates of Star Formation, Supermassive Black Hole Accretion and Outflows in Distant Galaxies. Astrophys. J., 772:112, 2013.
- Hot Accretion Flows Around Black Holes. Ann. Rev. Astron. Astrophys., 52:529–588, 2014.
- Powerful Outflows and Feedback from Active Galactic Nuclei. Ann. Rev. Astron. Astrophys., 53:115–154, 2015.
- C. M. Harrison. Impact of supermassive black hole growth on star formation. Nature Astronomy, 1:0165, July 2017.
- G. Fabbiano and M. Elvis. The Interaction of the Active Nucleus with the Host Galaxy Interstellar Medium. In Handbook of X-ray and Gamma-ray Astrophysics, page 92. Springer, 2022.
- Quasars and the intergalactic medium at cosmic dawn. Annual Rev. Astron. Astrophys., 61:373–426, 2023.
- Primordial black holes with multimodal mass spectra. Phys. Rev. D, 99(10):103535, 2019.
- Clusters of primordial black holes. Eur. Phys. J. C, 79(3):246, 2019.
- Spatial clustering of primordial black holes. Phys. Rev. D, 98(12):123533, 2018.
- Towards closing the window of primordial black holes as dark matter: The case of large clustering. Phys. Rev. D, 99(6):063532, 2019.
- The clustering evolution of primordial black holes. JCAP, 11:028, 2020.
- P. A. R. Ade et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys., 594:A13, 2016.
- N. Aghanim et al. Planck 2018 results. I. Overview and the cosmological legacy of Planck. Astron. Astrophys., 641:A1, 2020.
- Formation of galaxies and clusters of galaxies by selfsimilar gravitational condensation. Astrophys. J., 187:425–438, 1974.
- Galaxy formation and evolution. Cambridge University Press, 2010.
- Benedikt Diemer. COLOSSUS: A python toolkit for cosmology, large-scale structure, and dark matter halos. Astrophys. J. Suppl., 239(2):35, 2018.
- Baryonic solutions and challenges for cosmological models of dwarf galaxies. Nature Astron., 6(8):897–910, 2022.
- Cosmological Simulations of Galaxy Formation. Nature Rev. Phys., 2(1):42–66, 2020.
- Large-scale dark matter simulations. Living Reviews in Computational Astrophysics, 8(1):1, 2022.
- Philip F. Hopkins. A new class of accurate, mesh-free hydrodynamic simulation methods. Mon. Not. Roy. Astron. Soc., 450(1):53–110, 2015.
- Volker Springel. E pur si muove: Galiliean-invariant cosmological hydrodynamical simulations on a moving mesh. Mon. Not. Roy. Astron. Soc., 401:791, 2010.
- Romain Teyssier. Cosmological hydrodynamics with adaptive mesh refinement: a new high resolution code called RAMSES. Astron. Astrophys., 385:337–364, 2002.
- Multi-scale initial conditions for cosmological simulations. Mon. Not. Roy. Astron. Soc., 415:2101–2121, 2011.
- Ya. B. Zeldovich. Gravitational instability: An Approximate theory for large density perturbations. Astron. Astrophys., 5:84–89, 1970.
- Volker Springel. The Cosmological simulation code GADGET-2. Mon. Not. Roy. Astron. Soc., 364:1105–1134, 2005.
- The Rockstar Phase-Space Temporal Halo Finder and the Velocity Offsets of Cluster Cores. Astrophys. J., 762:109, 2013.
- Effect of Primordial Black Holes on the Cosmic Microwave Background and Cosmological Parameter Estimates. Astrophys. J., 680:829, 2008.
- G. Hasinger. Illuminating the dark ages: Cosmic backgrounds from accretion onto primordial black hole dark matter. JCAP, 07:022, 2020.
- Exploring the High-redshift PBH-ΛΛ\Lambdaroman_ΛCDM Universe: Early Black Hole Seeding, the First Stars and Cosmic Radiation Backgrounds. Astrophys. J., 926(2):205, 2022.
- Constraining primordial black holes as dark matter using the global 21-cm signal with X-ray heating and excess radio background. JCAP, 03:030, 2022.
- Can accreting primordial black holes explain the excess radio background? Mon. Not. Roy. Astron. Soc., 517(2):2454–2461, 2022.
- Cosmic radiation backgrounds from primordial black holes. Mon. Not. Roy. Astron. Soc., 517(1):1086–1097, 2022.
- Distinguishing the impact and signature of black holes from different origins in early cosmic history. arXiv preprint arXiv:2310.01763, 2023.
- Primordial black holes as near-infrared background sources. Mon. Not. Roy. Astron. Soc., 527(2):4153–4161, 2024.
- Constraining Primordial Black Holes with Dwarf Galaxy Heating. Astrophys. J. Lett., 908(2):L23, 2021.
- Gas heating from spinning and non-spinning evaporating primordial black holes. Phys. Lett. B, 820:136459, 2021.
- Interstellar gas heating by primordial black holes. JCAP, 03(03):017, 2022.
- Black hole feeding and feedback: the physics inside the ‘sub-grid’. Mon. Not. Roy. Astron. Soc., 467(3):3475–3492, 2017.
- Volker Bromm. Formation of the first stars. Rep. Prog. Phys., 76:112901, 2013.
- The first stars: formation, properties, and impact. Annual Rev. Astron. Astrophys., 61, 2023.
- M. Trenti and M. Stiavelli. The Formation Rates of Population III Stars and Chemical Enrichment of Halos during the Reionization Era. Astrophys. J., 694:879–892, 2009.
- The influence of streaming velocities and Lyman–Werner radiation on the formation of the first stars. Mon. Not. Roy. Astron. Soc., 507(2):1775–1787, 2021.
- The First Galaxies. Annual Rev. Astron. Astrophys., 49:373–407, 2011.
- James R. Chisholm. Clustering of primordial black holes: basic results. Phys. Rev. D, 73:083504, 2006.
- A. Kashlinsky. LIGO Gravitational Wave Detection, Primordial Black Holes, and the Near-IR Cosmic Infrared Background Anisotropies. Astrophys. J. Lett., 823:L25, 2016.
- A. Kashlinsky. Cosmological Advection Flows in the Presence of Primordial Black Holes as Dark Matter and Formation of First Sources. Phys. Rev. Lett., 126(1):011101, 2021.
- F. Atrio-Barandela. The Effect of Primordial Black Holes and Streaming Motions on Structure Formation. Astrophys. J., 939(2):69, 2022.
- Two populations of metal-free stars in the early Universe. Mon. Not. Roy. Astron. Soc., 373:128–138, 2006.
- Cooling, dynamics and fragmentation of massive gas clouds: clues to the masses and radii of galaxies and clusters. Mon. Not. Roy. Astron. Soc., 179:541–559, June 1977.
- J. Silk. On the Fragmentation of cosmic gas clouds. 1. The Formation of galaxies and the first generation of stars. Astrophys. J., 211:638–648, 1977.
- Hungry or not: how stellar-mass black holes grow (or don’t) in dark matter mini-haloes at high resolution. Mon. Not. Roy. Astron. Soc., 529(1):604–627, 2024.
- The First Stars: formation under X-ray feedback. Mon. Not. Roy. Astron. Soc., 453(4):4136–4147, 2015.
- Massimo Ricotti. X-ray twinkles and Population III stars. Mon. Not. Roy. Astron. Soc., 462(1):601–609, 2016.
- Population III star formation in an X-ray background – I. Critical halo mass of formation and total mass in stars. Mon. Not. Roy. Astron. Soc., 508(4):6176–6192, 2021.
- When did Population III star formation end? Mon. Not. Roy. Astron. Soc., 497(3):2839–2854, 2020.
- Primordial star formation under the influence of far ultraviolet radiation: 1540 cosmological haloes and the stellar mass distribution. Mon. Not. Roy. Astron. Soc., 448(1):568–587, 2015.
- Galactic dynamics, volume 20. Princeton university press, 2011.
- Formation of the First Supermassive Black Holes. Astrophys. J., 596:34–46, 2003.
- Muhammad A Latif. Black hole formation via gas-dynamical processes, pages 99–113. World Scientific, 2019.
- Formation of the first stars and black holes. Space Sci. Rev., 216(4):48, 2020.
- Direct collapse black hole formation from synchronized pairs of atomic cooling haloes. Mon. Not. Roy. Astron. Soc., 445(1):1056–1063, 2014.
- Formation of massive black holes in rapidly growing pre-galactic gas clouds. Nature, 566:85–88, 2019.
- The Emergence of the First Star-free Atomic Cooling Haloes in the Universe. Mon. Not. Roy. Astron. Soc., 492(2):3021–3031, 2020.
- The critical radiation intensity for direct collapse black hole formation: dependence on the radiation spectral shape. Mon. Not. Roy. Astron. Soc., 445(1):544–553, 2014.
- Formation of GW190521 via gas accretion onto Population III stellar black hole remnants born in high-redshift minihalos. Astrophys. J. Lett., 903(1):L21, 2020.
- A population of red candidate massive galaxies 600 Myr after the Big Bang. Nature, 616:266–269, 2023.
- An extraordinarily massive galaxy that formed its stars at z≳11greater-than-or-equivalent-to𝑧11z\gtrsim 11italic_z ≳ 11. arXiv preprint arXiv:2308.05606, 2023.
- Andy D. Goulding et al. UNCOVER: The Growth of the First Massive Black Holes from JWST/NIRSpec—Spectroscopic Redshift Confirmation of an X-Ray Luminous AGN at z = 10.1. Astrophys. J. Lett., 955(1):L24, 2023.
- Jenny E. Greene et al. UNCOVER Spectroscopy Confirms the Surprising Ubiquity of Active Galactic Nuclei in Red Sources at z >>> 5. Astrophys. J., 964(1):39, 2024.
- Jades. the diverse population of infant black holes at 4<z<114𝑧114<z<114 < italic_z < 11: merging, tiny, poor, but mighty. arXiv preprint arXiv:2308.01230, 2023.
- First detection of an over-massive black hole galaxy: Uhz1–evidence for heavy black hole seeds from direct collapse? arXiv preprint arXiv:2308.02654, 2023.
- Michael Boylan-Kolchin. Stress testing ΛΛ\Lambdaroman_ΛCDM with high-redshift galaxy candidates. Nature Astron., 7(6):731–735, 2023.
- High-redshift Galaxies from Early JWST Observations: Constraints on Dark Energy Models. Astrophys. J. Lett., 938(1):L5, 2022.
- Massive dark matter haloes at high redshift: implications for observations in the JWST era. Mon. Not. Roy. Astron. Soc., 526(2):2542–2559, 2023.
- Accelerating Early Massive Galaxy Formation with Primordial Black Holes. Astrophys. J. Lett., 937(2):L30, 2022.
- An inflation model for massive primordial black holes to interpret the jwst observations. arXiv preprint arXiv:2306.05364, 2023.
- The Young and the Wild: What Happens to Protoclusters Forming at Redshift z ≈\approx≈ 4? Astrophys. J., 950(2):191, 2023.
- Massimo Meneghetti et al. A persistent excess of galaxy-galaxy strong lensing observed in galaxy clusters. Astron. Astrophys., 678:L2, 2023.
- Efficient formation of a massive quiescent galaxy at redshift 4.9. arXiv e-prints, page arXiv:2404.05683, April 2024.
- Bernard J. Carr and M. Sakellariadou. Dynamical constraints on dark compact objects. Astrophys. J., 516:195–220, 1999.
- Limits on primordial black holes from μ𝜇\muitalic_μ distortions in cosmic microwave background. Phys. Rev. D, 97(4):043525, 2018.
- Supermassive primordial black holes from inflation. arXiv e-prints, pages arXiv–2308, 2023.
- Formation of supermassive primordial black holes by Affleck-Dine mechanism. Phys. Rev. D, 100(10):103521, 2019.
- Revisiting the Affleck-Dine mechanism for primordial black hole formation. JCAP, 10:048, 2022.
- K. Jedamzik and Jens C. Niemeyer. Primordial black hole formation during first order phase transitions. Phys. Rev. D, 59:124014, 1999.
- Primordial black hole production during first-order phase transitions. Phys. Rev. D, 105(2):L021303, 2022.
- Supermassive Black Holes, Ultralight Dark Matter, and Gravitational Waves from a First Order Phase Transition. Phys. Rev. Lett., 128(8):081101, 2022.
- Black holes and the multiverse. JCAP, 02:064, 2016.
- Supermassive primordial black holes in multiverse: for nano-Hertz gravitational wave and high-redshift JWST galaxies. arXiv e-prints, page arXiv:2306.17577, June 2023.