Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strong Convexity of Sets in Riemannian Manifolds (2312.03583v3)

Published 6 Dec 2023 in math.OC

Abstract: Curvature properties of convex objects, such as strong convexity, are important in designing and analyzing convex optimization algorithms in the Hilbertian or Riemannian settings. In the case of the Hilbertian setting, strongly convex sets are well studied. Herein, we propose various definitions of strong convexity for uniquely geodesic sets in a Riemannian manifold. We study their relationship, propose tools to determine the geodesic strongly convex nature of sets, and analyze the convergence of optimization algorithms over those sets. In particular, we demonstrate that the Riemannian Frank-Wolfe algorithm enjoys a global linear convergence rate when the Riemannian scaling inequalities hold.

Citations (2)

Summary

We haven't generated a summary for this paper yet.