Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Connected Dominating Sets in Triangulations (2312.03399v2)

Published 6 Dec 2023 in math.CO and cs.DM

Abstract: We show that every $n$-vertex triangulation has a connected dominating set of size at most $10n/21$. Equivalently, every $n$ vertex triangulation has a spanning tree with at least $11n/21$ leaves. Prior to the current work, the best known bounds were $n/2$, which follows from work of Albertson, Berman, Hutchinson, and Thomassen (J. Graph Theory \textbf{14}(2):247--258). One immediate consequence of this result is an improved bound for the SEFENOMAP graph drawing problem of Angelini, Evans, Frati, and Gudmundsson (J. Graph Theory \textbf{82}(1):45--64). As a second application, we show that for every set $P$ of $\lceil 11n/21\rceil$ points in $\R2$ every $n$-vertex planar graph has a one-bend non-crossing drawing in which some set of $11n/21$ vertices is drawn on the points of $P$. The main result extends to $n$-vertex triangulations of genus-$g$ surfaces, and implies that these have connected dominating sets of size at most $10n/21+O(\sqrt{gn})$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. Graphs with homeomorphically irreducible spanning trees. J. Graph Theory, 14(2):247–258, 1990. doi:10.1002/JGT.3190140212.
  2. SEFE without mapping via large induced outerplane graphs in plane graphs. J. Graph Theory, 82(1):45–64, 2016. doi:10.1002/JGT.21884.
  3. A polynomial bound for untangling geometric planar graphs. Discret. Comput. Geom., 42(4):570–585, 2009. doi:10.1007/S00454-008-9125-3.
  4. Robust connectivity of graphs on surfaces. SIAM J. Discret. Math., 36(2):1416–1435, 2022. doi:10.1137/21M1417077.
  5. Connected domination. In [21]. doi:10.1007/978-3-030-51117-3.
  6. Homeomorphically irreducible spanning trees in locally connected graphs. Comb. Probab. Comput., 21(1-2):107–111, 2012. doi:10.1017/S0963548311000526.
  7. Bounds for the connected domination number of maximal outerplanar graphs. Discret. Appl. Math., 320:235–244, 2022. doi:10.1016/J.DAM.2022.05.024.
  8. Triangulations admit dominating sets of size 2⁢n/72𝑛72n/72 italic_n / 7. CoRR, abs/2310.11254, 2023. To appear at SoDA 2024, doi:10.48550/arXiv.2310.11254.
  9. Drawing planar graphs with many collinear vertices. J. Comput. Geom., 9(1):94–130, 2018. doi:10.20382/jocg.v9i1a4.
  10. Curve-constrained drawings of planar graphs. Comput. Geom., 30(1):1–23, 2005. doi:10.1016/j.comgeo.2004.04.002.
  11. Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics. Springer, 2012.
  12. Connected Dominating Set: Theory and Applications, volume 77 of Springer Optimization and Its Applications. Springer, New York, NY, 2013. doi:10.1007/978-1-4614-5242-3.
  13. Vida Dujmović. The utility of untangling. J. Graph Algorithms Appl., 21(1):121–134, 2017. doi:10.7155/JGAA.00407.
  14. Every collinear set in a planar graph is free. Discret. Comput. Geom., 65(4):999–1027, 2021. doi:10.1007/S00454-019-00167-X.
  15. Dual circumference and collinear sets. Discret. Comput. Geom., 69(1):26–50, 2023. doi:10.1007/S00454-022-00418-4.
  16. David Eppstein. Dynamic generators of topologically embedded graphs. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’03, page 599–608. Society for Industrial and Applied Mathematics, USA, 2003.
  17. Jeff Erickson. Lecture notes in one-dimensional computational topology. https://jeffe.cs.illinois.edu/teaching/comptop/2023/schedule.html, 2023.
  18. Universal sets of n points for 1-bend drawings of planar graphs with n vertices. In Seok-Hee Hong, Takao Nishizeki, and Wu Quan, editors, Graph Drawing, 15th International Symposium, GD 2007, Sydney, Australia, September 24-26, 2007. Revised Papers, volume 4875 of Lecture Notes in Computer Science, pages 345–351. Springer, 2007. doi:10.1007/978-3-540-77537-9_34.
  19. How to draw a planar graph on a grid. Comb., 10(1):41–51, 1990. doi:10.1007/BF02122694.
  20. Domination in Graphs Volume 2: Advanced Topics. Routledge, New York, 1998. doi:10.1201/9781315141428.
  21. Topics in Domination in Graphs. Developments in Mathematics. Springer, 2020. doi:10.1007/978-3-030-51117-3.
  22. Domination in Graphs: Core Concepts. Springer Monographs in Mathematics. Springer, 2023. doi:10.1007/978-3-031-09496-5.
  23. Gregorio Hernández. Vigilancia vigilada. In IV Encuentro de Geometría Computacional, pages 127–140. Granada, 1993.
  24. Efficient algorithms for graph manipulation [H] (algorithm 447). Commun. ACM, 16(6):372–378, 1973. doi:10.1145/362248.362272.
  25. Spanning trees with many leaves. SIAM Journal on Discrete Mathematics 1991-feb vol. 4 iss. 1, 4, 1991. doi:10.1137/0404010.
  26. Dominating sets in planar graphs. Eur. J. Comb., 17(6):565–568, 1996. doi:10.1006/EUJC.1996.0048.
  27. Finding the intersection of two convex polyhedra. Theor. Comput. Sci., 7:217–236, 1978. doi:10.1016/0304-3975(78)90051-8.
  28. Spanning trees for many different numbers of leaves. CoRR, abs/2312.13674, 2023. doi:10.48550/arXiv.2312.13674.
  29. On collinear sets in straight-line drawings. In Petr Kolman and Jan Kratochvíl, editors, Graph-Theoretic Concepts in Computer Science - 37th International Workshop, WG 2011, Teplá Monastery, Czech Republic, June 21-24, 2011. Revised Papers, volume 6986 of Lecture Notes in Computer Science, pages 295–306. Springer, 2011. doi:10.1007/978-3-642-25870-1_27.
  30. A simple heuristic for minimum connected dominating set in graphs. Int. J. Found. Comput. Sci., 14(2):323–333, 2003. doi:10.1142/S0129054103001753.
  31. Wei Zhuang. Connected domination in maximal outerplanar graphs. Discret. Appl. Math., 283:533–541, 2020. doi:10.1016/J.DAM.2020.01.033.
  32. Simon Špacapan. The domination number of plane triangulations. J. Comb. Theory, Ser. B, 143:42–64, 2020. doi:10.1016/J.JCTB.2019.11.005.
Citations (2)

Summary

We haven't generated a summary for this paper yet.