Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Advantage of Quantum Machine Learning from General Computational Advantages (2312.03057v1)

Published 5 Dec 2023 in quant-ph, cs.LG, and stat.ML

Abstract: An overarching milestone of quantum machine learning (QML) is to demonstrate the advantage of QML over all possible classical learning methods in accelerating a common type of learning task as represented by supervised learning with classical data. However, the provable advantages of QML in supervised learning have been known so far only for the learning tasks designed for using the advantage of specific quantum algorithms, i.e., Shor's algorithms. Here we explicitly construct an unprecedentedly broader family of supervised learning tasks with classical data to offer the provable advantage of QML based on general quantum computational advantages, progressing beyond Shor's algorithms. Our learning task is feasibly achievable by executing a general class of functions that can be computed efficiently in polynomial time for a large fraction of inputs by arbitrary quantum algorithms but not by any classical algorithm. We prove the hardness of achieving this learning task for any possible polynomial-time classical learning method. We also clarify protocols for preparing the classical data to demonstrate this learning task in experiments. These results open routes to exploit a variety of quantum advantages in computing functions for the experimental demonstration of the advantage of QML.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. P. Wittek, Quantum Machine Learning: What Quantum Computing Means to Data Mining (Elsevier, 2014).
  2. M. Schuld and F. Petruccione, Machine learning with quantum computers (Springer, 2021).
  3. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th ed. (Cambridge University Press, 2011).
  4. S. Arora and B. Barak, Computational complexity: A Modern Approach (Cambridge University Press, 2009).
  5. M. J. Kearns, The computational complexity of machine learning (MIT press, 1990).
  6. M. J. Kearns and U. Vazirani, An introduction to computational learning theory (MIT press, 1994).
  7. F. Bach, Learning Theory from First Principles (2023).
  8. P. Rebentrost, M. Mohseni, and S. Lloyd, Quantum support vector machine for big data classification, Phys. Rev. Lett. 113, 130503 (2014).
  9. Z. Zhao, J. K. Fitzsimons, and J. F. Fitzsimons, Quantum-assisted gaussian process regression, Phys. Rev. A 99, 052331 (2019).
  10. H. Yamasaki and S. Sonoda, Exponential error convergence in data classification with optimized random features: Acceleration by quantum machine learning (2022), arXiv:2106.09028 [quant-ph] .
  11. P. W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in Proceedings 35th annual symposium on foundations of computer science (Ieee, 1994) pp. 124–134.
  12. P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Journal on Computing 26, 1484 (1997).
  13. P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Review 41, 303 (1999).
  14. R. A. Servedio and S. J. Gortler, Equivalences and separations between quantum and classical learnability, SIAM Journal on Computing 33, 1067 (2004).
  15. Y. Liu, S. Arunachalam, and K. Temme, A rigorous and robust quantum speed-up in supervised machine learning, Nature Physics 17, 1013 (2021).
  16. M. Kearns and L. Valiant, Cryptographic limitations on learning boolean formulae and finite automata, J. ACM 41, 67–95 (1994).
  17. C. Gyurik and V. Dunjko, On establishing learning separations between classical and quantum machine learning with classical data (2023a), arXiv:2208.06339 [quant-ph] .
  18. C. Gyurik and V. Dunjko, Exponential separations between classical and quantum learners (2023b), arXiv:2306.16028 [quant-ph] .
  19. C. Gidney and M. Ekerå, How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits, Quantum 5, 433 (2021).
  20. H. W. Lenstra and C. Pomerance, A rigorous time bound for factoring integers, Journal of the American Mathematical Society 5, 483 (1992).
  21. S. Lloyd, S. Garnerone, and P. Zanardi, Quantum algorithms for topological and geometric analysis of data, Nature communications 7, 10138 (2016).
  22. R. Hayakawa, Quantum algorithm for persistent betti numbers and topological data analysis, Quantum 6, 873 (2022).
  23. B. Ameneyro, G. Siopsis, and V. Maroulas, Quantum persistent homology for time series, in 2022 IEEE/ACM 7th Symposium on Edge Computing (SEC) (2022) pp. 387–392.
  24. S. McArdle, A. Gilyén, and M. Berta, A streamlined quantum algorithm for topological data analysis with exponentially fewer qubits (2022), arXiv:2209.12887 [quant-ph] .
  25. S. Hallgren, Polynomial-time quantum algorithms for pell’s equation and the principal ideal problem, J. ACM 54 (2007).
  26. M. H. Freedman, M. Larsen, and Z. Wang, A modular functor which is universal for quantum computation, Communications in Mathematical Physics 227, 605 (2002).
  27. P. Wocjan and S. Zhang, Several natural bqp-complete problems (2006), arXiv:quant-ph/0606179 [quant-ph] .
  28. A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum algorithm for linear systems of equations, Phys. Rev. Lett. 103, 150502 (2009).
  29. D. Aharonov and I. Arad, The bqp-hardness of approximating the jones polynomial, New Journal of Physics 13, 035019 (2011).
  30. L. G. Valiant, A theory of the learnable, Commun. ACM 27, 1134–1142 (1984).
  31. T. M. Cover, Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition, IEEE Transactions on Electronic Computers EC-14, 326 (1965).
  32. S. Aaronson, The equivalence of sampling and searching, in Computer Science – Theory and Applications, edited by A. Kulikov and N. Vereshchagin (Springer Berlin Heidelberg, Berlin, Heidelberg, 2011) pp. 1–14.
  33. A. Bogdanov and L. Trevisan, Average-case complexity, Foundations and Trends® in Theoretical Computer Science 2, 1 (2006).
  34. P. Scheiblechner, On the complexity of deciding connectedness and computing betti numbers of a complex algebraic variety, Journal of Complexity 23, 359 (2007).
  35. H. Edelsbrunner and S. Parsa, On the computational complexity of betti numbers: Reductions from matrix rank, in Proceedings of the 2014 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 152–160.
  36. C. Cade and P. M. Crichigno, Complexity of supersymmetric systems and the cohomology problem (2021), arXiv:2107.00011 [quant-ph] .
  37. C. Gyurik, C. Cade, and V. Dunjko, Towards quantum advantage via topological data analysis, Quantum 6, 855 (2022).
  38. M. Crichigno and T. Kohler, Clique homology is qma1-hard (2022), arXiv:2209.11793 [quant-ph] .
  39. A. Schmidhuber and S. Lloyd, Complexity-theoretic limitations on quantum algorithms for topological data analysis (2022), arXiv:2209.14286 [quant-ph] .
  40. R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signatures and public-key cryptosystems, Commun. ACM 21, 120–126 (1978).
  41. J. A. Buchmann and H. C. Williams, A key exchange system based on real quadratic fields extended abstract, in Advances in Cryptology — CRYPTO’ 89 Proceedings, edited by G. Brassard (Springer New York, New York, NY, 1990) pp. 335–343.
  42. M. Schuld and N. Killoran, Quantum machine learning in feature hilbert spaces, Phys. Rev. Lett. 122, 040504 (2019).
  43. H.-Y. Huang, R. Kueng, and J. Preskill, Information-theoretic bounds on quantum advantage in machine learning, Phys. Rev. Lett. 126, 190505 (2021b).
  44. D. Aharonov, J. Cotler, and X.-L. Qi, Quantum algorithmic measurement, Nature communications 13, 887 (2022).
  45. H.-Y. Huang, S. Chen, and J. Preskill, Learning to predict arbitrary quantum processes (2023), arXiv:2210.14894 [quant-ph] .
  46. F. Meier and H. Yamasaki, Energy-consumption advantage of quantum computation (2023), arXiv:2305.11212 [quant-ph] .
  47. J.-G. Liu and L. Wang, Differentiable learning of quantum circuit born machines, Phys. Rev. A 98, 062324 (2018).
  48. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT Press, 2016).
  49. L. A. Levin, Average case complete problems, SIAM Journal on Computing 15, 285 (1986).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com