Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Diff-GO: Diffusion Goal-Oriented Communications to Achieve Ultra-High Spectrum Efficiency (2312.02984v1)

Published 13 Nov 2023 in cs.LG, cs.AI, cs.CV, cs.MM, and eess.SP

Abstract: The latest advances in AI present many unprecedented opportunities to achieve much improved bandwidth saving in communications. Unlike conventional communication systems focusing on packet transport, rich datasets and AI makes it possible to efficiently transfer only the information most critical to the goals of message recipients. One of the most exciting advances in generative AI known as diffusion model presents a unique opportunity for designing ultra-fast communication systems well beyond language-based messages. This work presents an ultra-efficient communication design by utilizing generative AI-based on diffusion models as a specific example of the general goal-oriented communication framework. To better control the regenerated message at the receiver output, our diffusion system design includes a local regeneration module with finite dimensional noise latent. The critical significance of noise latent control and sharing residing on our Diff-GO is the ability to introduce the concept of "local generative feedback" (Local-GF), which enables the transmitter to monitor the quality and gauge the quality or accuracy of the message recovery at the semantic system receiver. To this end, we propose a new low-dimensional noise space for the training of diffusion models, which significantly reduces the communication overhead and achieves satisfactory message recovery performance. Our experimental results demonstrate that the proposed noise space and the diffusion-based generative model achieve ultra-high spectrum efficiency and accurate recovery of transmitted image signals. By trading off computation for bandwidth efficiency (C4BE), this new framework provides an important avenue to achieve exceptional computation-bandwidth tradeoff.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. X. Luo, H.-H. Chen, and Q. Guo, “Semantic communications: Overview, open issues, and future research directions,” IEEE Wireless Communications, vol. 29, no. 1, pp. 210–219, 2022.
  2. J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” in Advances in Neural Information Processing Systems, vol. 33, 2020, pp. 6840–6851.
  3. E. C. Strinati and S. Barbarossa, “6g networks: Beyond shannon towards semantic and goal-oriented communications,” Computer Networks, vol. 190, p. 107930, 2021.
  4. Y. Wang, M. Chen, T. Luo, W. Saad, D. Niyato, H. V. Poor, and S. Cui, “Performance optimization for semantic communications: An attention-based reinforcement learning approach,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 9, pp. 2598–2613, 2022.
  5. Y. Liu, X. Wang, Z. Ning, M. Zhou, L. Guo, and B. Jedari, “A survey on semantic communications: technologies, solutions, applications and challenges,” Digital Communications and Networks, 2023.
  6. Z. Qin, X. Tao, J. Lu, W. Tong, and G. Y. Li, “Semantic communications: Principles and challenges,” arXiv preprint arXiv:2201.01389, 2021.
  7. C. Chaccour, W. Saad, M. Debbah, Z. Han, and H. V. Poor, “Less data, more knowledge: Building next generation semantic communication networks,” arXiv preprint arXiv:2211.14343, 2022.
  8. E. Grassucci, S. Barbarossa, and D. Comminiello, “Generative semantic communication: Diffusion models beyond bit recovery,” arXiv preprint arXiv:2306.04321, 2023.
  9. Q. Hu, G. Zhang, Z. Qin, Y. Cai, G. Yu, and G. Y. Li, “Robust semantic communications with masked vq-vae enabled codebook,” IEEE Transactions on Wireless Communications, pp. 1–1, 2023.
  10. X. Luo, B. Yin, Z. Chen, B. Xia, and J. Wang, “Autoencoder-based semantic communication systems with relay channels,” in 2022 IEEE International Conference on Communications Workshops (ICC Workshops), 2022, pp. 711–716.
  11. J. Huang, D. Li, C. Huang, X. Qin, and W. Zhang, “Joint task and data oriented semantic communications: A deep separate source-channel coding scheme,” arXiv preprint arXiv:2302.13580, 2023.
  12. G. Zhang, Q. Hu, Z. Qin, Y. Cai, G. Yu, and X. Tao, “A unified multi-task semantic communication system for multimodal data,” arXiv preprint arXiv:2209.07689, 2022.
  13. J. Dai, P. Zhang, K. Niu, S. Wang, Z. Si, and X. Qin, “Communication beyond transmitting bits: Semantics-guided source and channel coding,” IEEE Wireless Communications, vol. 30, no. 4, pp. 170–177, 2023.
  14. M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans trained by a two time-scale update rule converge to a local nash equilibrium,” Advances in Neural Information Processing Systems, vol. 30, 2017.
  15. H. Talebi and P. Milanfar, “Learned perceptual image enhancement,” in 2018 IEEE International Conference on Computational Photography (ICCP).   IEEE, 2018, pp. 1–13.
  16. Y. Li, M. Chen, W. Yang, K. Wang, J. Ma, A. C. Bovik, and Y. Zhang, “Samscore: A semantic structural similarity metric for image translation evaluation,” arXiv preprint arXiv:2305.15367, 2023.
  17. M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for semantic urban scene understanding,” 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223, 2016.
  18. P. Dhariwal and A. Nichol, “Diffusion models beat gans on image synthesis,” Advances in Neural Information Processing Systems, vol. 34, pp. 8780–8794, 2021.
  19. T. Park, M.-Y. Liu, T.-C. Wang, and J.-Y. Zhu, “Semantic image synthesis with spatially-adaptive normalization,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 2332–2341.
  20. X. Liu, G. Yin, J. Shao, X. Wang et al., “Learning to predict layout-to-image conditional convolutions for semantic image synthesis,” Advances in Neural Information Processing Systems, vol. 32, 2019.
  21. Z. Zhu, Z. Xu, A. You, and X. Bai, “Semantically multi-modal image synthesis,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 5467–5476.
  22. V. Sushko, E. Schönfeld, D. Zhang, J. Gall, B. Schiele, and A. Khoreva, “You only need adversarial supervision for semantic image synthesis,” arXiv preprint arXiv:2012.04781, 2020.
  23. W. Wang, J. Bao, W. Zhou, D. Chen, D. Chen, L. Yuan, and H. Li, “Semantic image synthesis via diffusion models,” arXiv preprint arXiv:2207.00050, 2022.
  24. N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, “End-to-end object detection with transformers,” in European Conference on Computer Vision, 2020, pp. 213–229.
  25. R. Ranftl, A. Bochkovskiy, and V. Koltun, “Vision transformers for dense prediction,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 12 179–12 188.
Citations (3)

Summary

We haven't generated a summary for this paper yet.