Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An empirical study of next-basket recommendations (2312.02550v1)

Published 5 Dec 2023 in cs.IR

Abstract: Next Basket Recommender Systems (NBRs) function to recommend the subsequent shopping baskets for users through the modeling of their preferences derived from purchase history, typically manifested as a sequence of historical baskets. Given their widespread applicability in the E-commerce industry, investigations into NBRs have garnered increased attention in recent years. Despite the proliferation of diverse NBR methodologies, a substantial challenge lies in the absence of a systematic and unified evaluation framework across these methodologies. Various studies frequently appraise NBR approaches using disparate datasets and diverse experimental settings, impeding a fair and effective comparative assessment of methodological performance. To bridge this gap, this study undertakes a systematic empirical inquiry into NBRs, reviewing seminal works within the domain and scrutinizing their respective merits and drawbacks. Subsequently, we implement designated NBR algorithms on uniform datasets, employing consistent experimental configurations, and assess their performances via identical metrics. This methodological rigor establishes a cohesive framework for the impartial evaluation of diverse NBR approaches. It is anticipated that this study will furnish a robust foundation and serve as a pivotal reference for forthcoming research endeavors in this dynamic field.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. Y. Qin, P. Wang, and C. Li, “The world is binary: Contrastive learning for denoising next basket recommendation,” in SIGIR, 2021, pp. 859–868.
  2. Q. Zhang, S. Wang, W. Lu, C. Feng, X. Peng, and Q. Wang, “Rethinking adjacent dependency in session-based recommendations,” in PAKDD, 2022, pp. 301–313.
  3. W. Lu, R. Wang, S. Wang, X. Peng, H. Wu, and Q. Zhang, “Aspect-driven user preference and news representation learning for news recommendation,” IEEE Transactions on Intelligent Transportation Systems, 2022.
  4. W. Lu, F. Meng, S. Wang, G. Zhang, X. Zhang, A. Ouyang, and X. Zhang, “Graph-based chinese word sense disambiguation with multi-knowledge integration,” Computers, Materials & Continua, vol. 61, no. 1, pp. 197–212, 2019.
  5. W. Lu, R. Yu, S. Wang, C. Wang, P. Jian, and H. Huang, “Sentence semantic matching based on 3d cnn for human–robot language interaction,” ACM Transactions on Internet Technology, vol. 21, no. 4, pp. 1–24, 2021.
  6. S. Wang, L. Cao, Y. Wang, Q. Z. Sheng, M. A. Orgun, and D. Lian, “A survey on session-based recommender systems,” ACM Computing Surveys, vol. 54, no. 7, pp. 1–38, 2021.
  7. W. Song, S. Wang, Y. Wang, and S. Wang, “Next-item recommendations in short sessions,” in RecSys, 2021, pp. 282–291.
  8. N. Wang, S. Wang, Y. Wang, Q. Z. Sheng, and M. Orgun, “Modelling local and global dependencies for next-item recommendations,” in WISE, 2020, pp. 285–300.
  9. S. Wang, L. Hu, Y. Wang, Q. Z. Sheng, M. Orgun, and L. Cao, “Modeling multi-purpose sessions for next-item recommendations via mixture-channel purpose routing networks,” in IJCAI, 2019, pp. 3771–3777.
  10. S. Wang, L. Hu, L. Cao, X. Huang, D. Lian, and W. Liu, “Attention-based transactional context embedding for next-item recommendation,” in AAAI, 2018, pp. 2532–2539.
  11. S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme, “Factorizing personalized markov chains for next-basket recommendation,” in WWW, 2010, pp. 811–820.
  12. S. Wan, Y. Lan, P. Wang, J. Guo, J. Xu, and X. Cheng, “Next basket recommendation with neural networks,” in RecSys (Poster), 2015.
  13. P. Wang, J. Guo, Y. Lan, J. Xu, S. Wan, and X. Cheng, “Learning hierarchical representation model for next-basket recommendation,” in SIGIR, 2015, pp. 403–412.
  14. F. Yu, Q. Liu, S. Wu, L. Wang, and T. Tan, “A dynamic recurrent model for next basket recommendation,” in SIGIR, 2016, pp. 729–732.
  15. H. Hu and X. He, “Sets2Sets: Learning from sequential sets with neural networks,” in SIGKDD, 2019, pp. 1491–1499.
  16. D.-T. Le, H. W. Lauw, and Y. Fang, “Correlation-sensitive next-basket recommendation,” in IJCAI, 2019, pp. 2808–2814.
  17. T. Bai, J.-Y. Nie, W. X. Zhao, Y. Zhu, P. Du, and J.-R. Wen, “An attribute-aware neural attentive model for next basket recommendation,” in SIGIR, 2018, pp. 1201–1204.
  18. S. Wang, L. Hu, Y. Wang, Q. Z. Sheng, M. Orgun, and L. Cao, “Intention Nets: Psychology-inspired user choice behavior modeling for next-basket prediction,” in AAAI, 2020, pp. 6259–6266.
  19. S. Wang, L. Hu, Y. Wang, Q. Z. Sheng, M. Orgun, and et al., “Intention2Basket: A neural intention-driven approach for dynamic next-basket planning,” in IJCAI, 2020, pp. 2333–2339.
  20. H. Hu, X. He, J. Gao, and Z. Zhang, “Modeling personalized item frequency information for next-basket recommendation,” in SIGIR, 2020, pp. 1071–1080.
  21. G. Faggioli, M. Polato, and F. Aiolli, “Recency aware collaborative filtering for next basket recommendation,” in UMAP, 2020, pp. 80–87.
  22. S. Wang, L. Cao, L. Hu, S. Berkovsky, X. Huang, L. Xiao, and W. Lu, “Hierarchical attentive transaction embedding with intra-and inter-transaction dependencies for next-item recommendation,” IEEE Intelligent Systems, vol. 36, no. 4, pp. 56–64, 2020.
  23. M. Ludewig and D. Jannach, “Evaluation of session-based recommendation algorithms,” User Modeling and User-Adapted Interaction, vol. 28, no. 4, pp. 331–390, 2018.
  24. S. Wang, L. Hu, Y. Wang, L. Cao, Q. Z. Sheng, and M. Orgun, “Sequential recommender systems: Challenges, progress and prospects,” in IJCAI, 2019, pp. 6332–6338.
  25. H. Fang, G. Guo, D. Zhang, and Y. Shu, “Deep learning-based sequential recommender systems: Concepts, algorithms, and evaluations,” in Proceedings of International Conference on Web Engineering, 2019, pp. 574–577.
  26. W. Guo, S. Wang, W. Lu, H. Wu, Q. Zhang, and Z. Shao, “Sequential dependency enhanced graph neural networks for session-based recommendations,” in DSAA, 2021, pp. 1–10.
  27. L. Hu, L. Cao, S. Wang, G. Xu, J. Cao, and Z. Gu, “Diversifying personalized recommendation with user-session context,” in IJCAI, 2017, pp. 1858–1864.
  28. N. Wang, S. Wang, Y. Wang, Q. Z. Sheng, and M. A. Orgun, “Exploiting intra- and inter-session dependencies for session-based recommendations,” World Wide Web Journal, vol. 25, no. 1, pp. 425–443, 2022.
  29. M. Beladev, L. Rokach, and B. Shapira, “Recommender systems for product bundling,” Knowledge-Based Systems, vol. 111, no. C, pp. 193–206, 2016.
  30. J. Bai, C. Zhou, J. Song, X. Qu, W. An, Z. Li, and J. Gao, “Personalized bundle list recommendation,” in WWW, 2019, pp. 60–71.
  31. J. Hao, T. Zhao, J. Li, X. L. Dong, C. Faloutsos, Y. Sun, and W. Wang, “P-companion: A principled framework for diversified complementary product recommendation,” in CIKM, 2020, pp. 2517–2524.
  32. L. Chen, Y. Liu, X. He, L. Gao, and Z. Zheng, “Matching user with item set: Collaborative bundle recommendation with deep attention network,” in IJCAI, 2019, pp. 2095–2101.
  33. H. Fang, D. Zhang, Y. Shu, and G. Guo, “Deep learning for sequential recommendation: Algorithms, influential factors, and evaluations,” ACM Transactions on Information Systems, vol. 39, no. 1, pp. 1–42, 2020.
  34. R. Guidotti, G. Rossetti, L. Pappalardo, F. Giannotti, and D. Pedreschi, “Market basket prediction using user-centric temporal annotated recurring sequences,” in ICDM, 2017, pp. 895–900.
  35. M. Ariannezhad, S. Jullien, M. Li, M. Fang, S. Schelter, and M. de Rijke, “ReCANet: A repeat consumption-aware neural network for next basket recommendation in grocery shopping,” in SIGIR, 2022.
Citations (1)

Summary

We haven't generated a summary for this paper yet.