Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Higher-order FEM and CIP-FEM for Helmholtz equation with high wave number and perfectly matched layer truncation (2312.02476v1)

Published 5 Dec 2023 in math.NA and cs.NA

Abstract: The high-frequency Helmholtz equation on the entire space is truncated into a bounded domain using the perfectly matched layer (PML) technique and subsequently, discretized by the higher-order finite element method (FEM) and the continuous interior penalty finite element method (CIP-FEM). By formulating an elliptic problem involving a linear combination of a finite number of eigenfunctions related to the PML differential operator, a wave-number-explicit decomposition lemma is proved for the PML problem, which implies that the PML solution can be decomposed into a non-oscillating elliptic part and an oscillating but analytic part. The preasymptotic error estimates in the energy norm for both the $p$-th order CIP-FEM and FEM are proved to be $C_1(kh)p + C_2k(kh){2p} +C_3 E{\rm PML}$ under the mesh condition that $k{2p+1}h{2p}$ is sufficiently small, where $k$ is the wave number, $h$ is the mesh size, and $E{\rm PML}$ is the PML truncation error which is exponentially small. In particular, the dependences of coefficients $C_j~(j=1,2)$ on the source $f$ are improved. Numerical experiments are presented to validate the theoretical findings, illustrating that the higher-order CIP-FEM can greatly reduce the pollution errors.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com