MUFFIN: Curating Multi-Faceted Instructions for Improving Instruction-Following (2312.02436v3)
Abstract: In the realm of LLMs, enhancing instruction-following capability often involves curating expansive training data. This is achieved through two primary schemes: i) Scaling-Inputs: Amplifying (input, output) pairs per task instruction, aiming for better instruction adherence. ii) Scaling Input-Free Tasks: Enlarging tasks, each composed of an (instruction, output) pair (without requiring a separate input anymore). However, LLMs under Scaling-Inputs tend to be overly sensitive to inputs, leading to misinterpretation or non-compliance with instructions. Conversely, Scaling Input-Free Tasks demands a substantial number of tasks but is less effective in instruction following when dealing with instances in Scaling-Inputs. This work introduces MUFFIN, a new scheme of instruction-following dataset curation. Specifically, we automatically Scale Tasks per Input by diversifying these tasks with various input facets. Experimental results across four zero-shot benchmarks, spanning both Scaling-Inputs and Scaling Input-Free Tasks schemes, reveal that LLMs, at various scales, trained on MUFFIN generally demonstrate superior instruction-following capabilities compared to those trained on the two aforementioned schemes.
- Renze Lou (18 papers)
- Kai Zhang (542 papers)
- Jian Xie (39 papers)
- Yuxuan Sun (79 papers)
- Janice Ahn (2 papers)
- Hanzi Xu (7 papers)
- Yu Su (138 papers)
- Wenpeng Yin (69 papers)