Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
96 tokens/sec
Gemini 2.5 Pro Premium
44 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
18 tokens/sec
GPT-4o
105 tokens/sec
DeepSeek R1 via Azure Premium
83 tokens/sec
GPT OSS 120B via Groq Premium
475 tokens/sec
Kimi K2 via Groq Premium
259 tokens/sec
2000 character limit reached

Oliver Curvature Bounds for the Brownian Continuum Random Tree (2312.01894v1)

Published 4 Dec 2023 in math.PR and math.MG

Abstract: We compute bounds in the expected Ollivier curvature for the Brownian continuum random tree $\mathcal{T}{\mathbb{e}}$. The results indicate that when the scale dependence of the Ollivier curvature is properly taken into account, the Ollivier-Ricci curvature of $\mathcal{T}{\mathbb{e}}$ is bounded above by every element of $\mathbb{R}$ for almost all points of $\mathcal{T}_{\mathbb{e}}$. This parallels the well-known result that every continuum tree is a $CAT(K)$ space for all $K\in\mathbb{R}$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)