Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Just-in-Time Detection of Silent Security Patches (2312.01241v3)

Published 2 Dec 2023 in cs.CR and cs.AI

Abstract: Open-source code is pervasive. In this setting, embedded vulnerabilities are spreading to downstream software at an alarming rate. While such vulnerabilities are generally identified and addressed rapidly, inconsistent maintenance policies may lead security patches to go unnoticed. Indeed, security patches can be {\em silent}, i.e., they do not always come with comprehensive advisories such as CVEs. This lack of transparency leaves users oblivious to available security updates, providing ample opportunity for attackers to exploit unpatched vulnerabilities. Consequently, identifying silent security patches just in time when they are released is essential for preventing n-day attacks, and for ensuring robust and secure maintenance practices. With LLMDA we propose to (1) leverage LLMs to augment patch information with generated code change explanations, (2) design a representation learning approach that explores code-text alignment methodologies for feature combination, (3) implement a label-wise training with labelled instructions for guiding the embedding based on security relevance, and (4) rely on a probabilistic batch contrastive learning mechanism for building a high-precision identifier of security patches. We evaluate LLMDA on the PatchDB and SPI-DB literature datasets and show that our approach substantially improves over the state-of-the-art, notably GraphSPD by 20% in terms of F-Measure on the SPI-DB benchmark.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com